Seismic ambient noise auto-correlation imaging in a CO2 storage area

Author:

Zhao Ce12,Zheng Yikang3,Wang Yibo3,Zhao Liang12

Affiliation:

1. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences , Beijing 100029 , China

2. University of Chinese Academy of Sciences , Beijing 100049 , China

3. Key Laboratory of Petroleum Resource Research, Institute of Geology and Geophysics, Chinese Academy of Sciences , Beijing 100029 , China

Abstract

Abstract Carbon capture and storage is an effective technique for achieving ‘carbon neutrality’. Seismology plays an important role in detecting and monitoring whether CO2 has been safely sealed. However, active seismic surveys are usually incapable of continuous observations. We can extract the body wave and image the subsurface interface directly and continuously via single sensor ambient noise auto-correlation. However, because of the weak body wave in the ambient noise and the multiples in the imaging results, it is challenging to improve the imaging resolution. This study provides a reference for the development of the ambient noise (phase) auto-correlation imaging method for future use in carbon storage areas. In this study, we performed numerical experiments to show that the phase auto-correlation method is better than the auto-correlation in terms of weakening artefacts and detecting subsurface thin CO2 layers. Then, we applied the phase auto-correlation method in the Ketzin (Germany) CO2 storage area. Using 223 body-wave dominated noise panels automatically selected from totally 4680 panels, we imaged two primary interfaces, which are consistent with the common midpoint stacking results obtained using active seismic surveys. We applied a multiple removal approach to the imaging results and obtained high precision results. Then, we applied the proposed workflow to three passive seismic survey lines north of the CO2 injection well. The results of the three passive surveys demonstrate the workflow is robust.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Industrial and Manufacturing Engineering,Geology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3