Correlations of inclusion-based rock-physics model inputs from Bayesian analysis

Author:

Spikes Kyle T1,Sen Mrinal K12

Affiliation:

1. Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin , Austin, TX 78712 , USA

2. Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin , Austin, TX 78712 , USA

Abstract

AbstractFor any given rock-physics model, knowledge of correlations among its inputs helps to define geologically and physically meaningful and informed models for a given problem. These informed models can, in turn, reduce the uncertainty in forward and inverse problems. We use a Bayesian framework to identify such correlations among inputs of two rock-physics models. That framework makes use of velocity and porosity measurements on both dry and brine-saturated carbonate samples. Two inclusion-based rock-physics models, the self-consistent approximation and the differential effective medium model, are analyzed along with these data to identify the underlying correlations. To do so, the posterior distribution must be evaluated, which is based on a prior model and the calculated likelihood function. Exhaustive sampling of the posterior is convenient in this case because relatively few input parameters to consider. Results are multi-variate histograms that indicate maximum a posteriori values of the inputs. Correlations among the inputs become evident when the Bayesian analysis is repeated many times with different prior models. These correlated values provide the inputs to optimized maximum a posteriori models. The correlations identified for the two rock-physics models under study should be used in relevant applications. Finally, all rock-physics models, along with an appropriate data set, should be examined in a similar Bayesian framework.

Publisher

Oxford University Press (OUP)

Subject

Management, Monitoring, Policy and Law,Industrial and Manufacturing Engineering,Geology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3