Affiliation:
1. Department of Physical Therapy, University of British Columbia, Vancouver, Canada
2. Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
3. Faculty of Health Sciences, Western University, London, Canada
Abstract
Abstract
Objective
Successful stepping reactions, led by either the paretic or nonparetic leg, in response to a loss of balance are critical to safe mobility poststroke. The purpose of this study was to measure sagittal plane hip, knee, ankle, and trunk kinematics during 2-step stepping reactions initiated by paretic and nonparetic legs of people who had stroke and members of a control group.
Methods
Principal component analysis (PCA) was used to reduce the data into movement patterns explaining interlimb coordination of the stepping and stance legs. Correlations among principal components loading scores and clinical measures of balance ability (as measured on the Community Balance and Mobility scale), motor impairment (as measured on the foot and leg sections of the Chedoke-McMaster Stroke Assessment), and step characteristics (length and velocity) were used to examine the effect of stroke on stepping reaction movement patterns.
Results
The first 5 principal components explained 95.9% of the movement pattern of stepping reactions and differentiated between stepping reactions initiated by paretic legs, nonparetic legs, or the legs of controls. Moderate-strong associations (ρ/r > 0.50) between specific principal component loading scores and clinical measures and step characteristics were dependent on the initiating leg. Lower levels of motor impairment, higher levels of balance ability, and faster and longer steps were associated with stepping reactions initiated by the paretic leg that comprised paretic leg flexion and nonparetic leg extension. Step initiation with the nonparetic leg showed associations between higher scores on clinical measures and movement patterns of flexion in both paretic and nonparetic legs.
Conclusions
Movement patterns of stepping reactions poststroke were influenced by the initiating leg. After stroke, specific movement patterns showed associations with clinical measures depending on the initiating leg, suggesting that these movement patterns are important to retraining of stepping reactions. Specifically, use of flexion patterning and assessment of between-leg pattern differentiation may be important aspects to consider during retraining of stepping reactions poststroke.
Impact
Evidence-based interventions targeting balance reactions are still in their infancy. This investigation of stepping reactions poststroke addresses a major gap in research.
Funder
Natural Sciences and Engineering Research Council of Canada
Canadian Institutes of Health Research
Publisher
Oxford University Press (OUP)
Subject
Physical Therapy, Sports Therapy and Rehabilitation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献