Affiliation:
1. Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
2. Institute of Systems Motor Science, University of Lübeck, Germany
Abstract
Abstract
Background
The process underlying the integration of perception and action is a focal topic in neuroscientific research and cognitive frameworks such as the theory of event coding have been developed to explain the mechanisms of perception-action integration. The neurobiological underpinnings are poorly understood. While it has been suggested that the catecholaminergic system may play a role, there are opposing predictions regarding the effects of catecholamines on perception-action integration.
Methods
Methylphenidate (MPH) is a compound commonly used to modulate the catecholaminergic system. In a double-blind, randomized crossover study design, we examined the effect of MPH (0.25 mg/kg) on perception-action integration using an established “event file coding” paradigm in a group of n = 45 healthy young adults.
Results
The data reveal that, compared with the placebo, MPH attenuates binding effects based on the established associations between stimuli and responses, provided participants are already familiar with the task. However, without prior task experience, MPH did not modulate performance compared with the placebo.
Conclusions
Catecholamines and learning experience interactively modulate perception-action integration, especially when perception-action associations have to be reconfigured. The data suggest there is a gain control–based mechanism underlying the interactive effects of learning/task experience and catecholaminergic activity during perception-action integration.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Oxford University Press (OUP)
Subject
Pharmacology (medical),Psychiatry and Mental health,Pharmacology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献