Pollination promotes ABA synthesis but not sexual reproduction in the apomictic species Zanthoxylum bungeanum Maxim.

Author:

Fei Xitong12,Shi Qianqian1,Lei Yu12,Wang Shujie12,Qi Yichen12,Hu Haichao12,Wei Anzhi12ORCID

Affiliation:

1. College of Forestry, Northwest Agriculture and Forestry University, No. 3 Taicheng Road, Yangling district, Xianyang City, Shaanxi Province, 712100, China

2. Research Centre for Engineering and Technology of Zanthoxylum State Forestry Administration, No. 3 Taicheng Road, Yangling district, Xianyang City, Shaanxi Province, 712100, China

Abstract

Abstract Apomixis is a form of reproduction that does not involve the fertilization of female gametes by male gametes but instead involves the production of offspring directly from the female parent. The offspring of apomixis are genetically identical to the female parent and inherit its traits. Therefore, apomixis has great potential for application to agricultural genetic breeding. However, it remains unclear whether apomictic species require pollination, and the impacts of pollination on such species are poorly understood. We investigated the effects of pollination on the apomictic species Zanthoxylum bungeanum Maxim. by analyzing its fertilization process, assembling its transcriptome, and measuring hormone concentrations, fruit setting rate and gene expression levels. Transcriptome sequencing of pollinated and unpollinated fruits resulted in a total of 69,131 PacBio reads. Of these, 7102 genes were up-regulated and 6491 genes were down-regulated. Analysis of the differentially expressed genes (DEGs) and construction of a weighted gene co-expression network showed that many DEGs were involved in plant hormone signal transduction, suggesting that hormonal signaling during development differs between pollinated and unpollinated fruit. The germination rate of Z. bungeanum pollen in vitro was only 11%, and pollen could not germinate in the embryo sac to complete fertilization. Although pollination did not enable Z. bungeanum to complete the sexual reproduction process, it significantly increased abscisic acid (ABA) concentration and fruit setting rate. Spraying 100 μg l−1 ABA also significantly increased the fruit setting rate. Therefore, ABA appears to be a key factor in the regulation of fruit setting in apomictic Z. bungeanum. Based on these results, we suggest that some male plants be cultivated in Z. bungeanum plantations or exogenous ABA be sprayed to increase the likelihood of pollination and thereby increase the fruit setting rate.

Funder

National Key Research and Development Program

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3