A novel dark septate fungal endophyte positively affected blueberry growth and changed the expression of plant genes involved in phytohormone and flavonoid biosynthesis

Author:

Wu Fan-Lin1ORCID,Li Yan2,Tian Wei1,Sun Yadong1,Chen Feiyan1,Zhang Yurou3,Zhai Yuxuan3,Zhang Jing4,Su Hongyan1ORCID,Wang Lei3

Affiliation:

1. Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), College of Agriculture, Ludong University, Yantai 264025, P. R. China

2. Key Laboratory of Coastal Biology and Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264025, P. R. China

3. College of life sciences, Ludong Universtiy, Yantai 264025, P. R. China

4. Bureau of National Resources of the Laishan District, Yantai 264025, P. R. China

Abstract

Abstract Dark septate endophytes (DSEs) are one of the most studied groups of root fungal endophytes in recent years. However, the effects of DSE on host plant are still under debate, and the molecular mechanisms are poorly understood. In this study, we identified a DSE fungus of the genus Anteaglonium, named T010, from the wild blueberry. When inoculated into Vaccinium corymbosum L. plants, T010 could enhance root growth and promote shoot branching, leading to increased plant growth. By comparative transcriptome analysis, we obtained 1948 regulated differentially expressed genes (DEGs) from the V. corymbosum plants treated by T010. Further functional enrichment analysis identified a series of DEGs enriched in transcriptional regulation, material transport, phytohormone biosynthesis and flavonoid biosynthesis. Moreover, the comparative analysis of liquid chromatography–mass spectrometry verified that T010 treatment induced the changes in the contents of various phytohormones and flavonoids. This is the first report on the isolation of DSE fungi of the genus Anteaglonium from blueberry roots. Moreover, our results suggested that T010 colonization could result in a series of changes in cell metabolism, biosynthesis and signal pathways, thereby promoting plant growth. Particularly, the changes of phytohormone and flavonoid metabolism induced by T010 colonization might contribute to the promotion of blueberry growth. Our results will provide new insights into understanding of the interaction of DSE fungi and host plants, as well as the development and utilization of DSE preparations.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Yantai

Natural Science Foundation of Shandong Province of China

Key Research and Development Program of Shandong Province

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3