Rootstock determines the drought resistance of poplar grafting combinations

Author:

Han Qingquan1,Guo Qingxue2,Korpelainen Helena3,Niinemets Ülo45,Li Chunyang2

Affiliation:

1. Institute of Physical Education, Ludong University, Yantai 264025, China

2. College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China

3. Department of Agricultural Sciences, Viikki Plant Science Centre, PO Box 27, University of Helsinki, FI-00014 Helsinki, Finland

4. Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006 Tartu, Estonia

5. Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia

Abstract

AbstractTo increase yield and/or enhance resistance to diseases, grafting is often applied in agriculture and horticulture. Interspecific grafting could possibly be used in forestry as well to improve drought resistance, but our understanding of how the rootstock of a more drought-resistant species can affect the grafted plant is very limited. Reciprocal grafts of two poplar species, Populus cathayana Rehder (less drought-resistant, C) and Populus deltoides Bart. ex Marsh (more drought-resistant, D) were generated. Four grafting combinations (scion/rootstock: C/C, C/D, D/D and D/C) were subjected to well-watered and drought stress treatments. C/D and D/C had a higher diameter growth rate, leaf biomass, intrinsic water-use efficiency (WUEi) and total non-structural carbohydrate (NSC) content than C/C and D/D in well-watered condition. However, drought caused greater differences between P. deltoides-rooted and P. cathayana-rooted grafting combinations, especially between C/D and D/C. The C/D grafting combination showed higher resistance to drought, as indicated by a higher stem growth rate, net photosynthetic rate, WUEi, leaf water potential, proline concentration and NSC concentration and maintenance of integrity of the leaf cellular ultrastructure under drought when compared with D/C. D/C exhibited severely damaged cell membranes, mitochondria and chloroplasts under drought. The scion genotype caused a strong effect on the root proline concentration: the P. cathayana scion increased the root proline concentration more than the P. deltoides scion (C/C vs D/C and C/D vs D/D) under water deficit. Our results demonstrated that mainly the rootstock was responsible for the drought resistance of grafting combinations. Grafting of the P. cathayana scion onto P. deltoides rootstock resulted in superior growth and biomass when compared with the other three combinations both in well-watered and drought stress conditions.

Funder

Talent Program of the Hangzhou Normal University

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3