Previous drought exposure leads to greater drought resistance in eucalypts through changes in morphology rather than physiology

Author:

Pritzkow Carola12ORCID,Szota Christopher1,Williamson Virginia1,Arndt Stefan K1ORCID

Affiliation:

1. School of Ecosystem and Forest Sciences, University of Melbourne, 500 Yarra Blvd, Burnley, VIC, 3121, Australia

2. School of Biology, University of Tasmania, 55 Private Bag, Hobart, TAS, 7001, Australia

Abstract

Abstract Over their lifetime, trees are repeatedly exposed to droughts. It is therefore important to understand whether repeated drought exposure makes trees more or less drought tolerant. Here, we investigated the effect of repeated droughts on functional trait expression and tree function in Eucalyptus obliqua. Further, we tested whether previous drought exposure enabled trees to avoid leaf death for longer under a subsequent severe drought. Trees were subjected for 1 year to 2 drought–rewatering cycles (drought treatment) or well-watered conditions, before imposing a severe drought. Trees in the drought treatment reduced their overall leaf area and biomass, whereas leaf-level anatomical, morphological and physiological traits remained mostly unaffected. There were no differences in water potential at the turgor loss point, leaf xylem vulnerability to embolism, leaf size, maximum xylem vessel diameter or cell wall thickness between treatments after the conditioning period. When exposed to a subsequent severe drought, trees previously exposed to drought were more drought tolerant due to a lower water potential at leaf death and tree-level morphological rather than physiological adjustments. Trees previously exposed to drought were smaller and used less water, which delayed leaf death for 39 days compared with 22 days for the well-watered trees. Our study indicates that previous drought exposure can facilitate tree-level morphological adjustment, which potentially enhances survival of E. obliqua trees during subsequent drought events.

Funder

Holsworth Wildlife Research Endowment and the Ecological Society of Australia

Madeleine Selwyn-Smith Memorial Fund

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3