Salinity has little effect on photosynthetic and respiratory responses to seasonal temperature changes in black mangrove (Avicennia germinans) seedlings

Author:

Aspinwall Michael J12ORCID,Faciane Martina3,Harris Kylie1,O’Toole Madison1,Neece Amy1,Jerome Vrinda1,Colón Mateo1,Chieppa Jeff12,Feller Ilka C4

Affiliation:

1. Department of Biology, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA

2. School of Forestry and Wildlife Sciences, Auburn University, 602 Duncan Drive, Auburn, AL 36849, USA

3. Department of Earth, Environmental and Planetary Sciences, Rice University, 6100 Main Street, Houston, TX 77005, USA

4. Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA

Abstract

Abstract Temperature and salinity are important regulators of mangrove range limits and productivity, but the physiological responses of mangroves to the interactive effects of temperature and salinity remain uncertain. We tested the hypothesis that salinity alters photosynthetic responses to seasonal changes in temperature and vapor pressure deficit (D), as well as thermal acclimation _of leaf respiration in black mangrove (Avicennia germinans). To test this hypothesis, we grew seedlings of A. germinans in an outdoor experiment for ~ 12 months under four treatments spanning 0 to 55 ppt porewater salinity. We repeatedly measured seedling growth and in situ rates of leaf net photosynthesis (Asat) and stomatal conductance to water vapor (gs) at prevailing leaf temperatures, along with estimated rates of Rubisco carboxylation (Vcmax) and electron transport for RuBP regeneration (Jmax), and measured rates of leaf respiration at 25 °C (Rarea25). We developed empirical models describing the seasonal response of leaf gas exchange and photosynthetic capacity to leaf temperature and D, and the response of Rarea25 to changes in mean daily air temperature. We tested the effect of salinity on model parameters. Over time, salinity had weak or inconsistent effects on Asat, gs and Rarea25. Salinity also had little effect on the biochemical parameters of photosynthesis (Vcmax, Jmax) and individual measurements of Asat, gs, Vcmax and Jmax showed a similar response to seasonal changes in temperature and D across all salinity treatments. Individual measurements of Rarea25 showed a similar inverse relationship with mean daily air temperature across all salinity treatments. We conclude that photosynthetic responses to seasonal changes in temperature and D, as well as seasonal temperature acclimation of leaf R, are largely consistent across a range of salinities in A. germinans. These results might simplify predictions of photosynthetic and respiratory responses to temperature in young mangroves.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3