Overexpression of the 3-hydroxy-3-methylglutaryl-CoA synthase gene LcHMGS effectively increases the yield of monoterpenes and sesquiterpenes

Author:

Wu Liwen12,Zhao Yunxiao12,Zhang Qiyan12,Chen Yicun12,Gao Ming12,Wang Yangdong12

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China

2. Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China

Abstract

Abstract Monoterpenes are important components of plant essential oils and have long been used as raw materials for spices and food flavorings. A number of studies have been performed to increase the content of monoterpenes in plants, but no obvious effect was observed. Exchange was observed between the methylerythritol phosphate (MEP) and mevalonic acid (MVA) metabolic pathways, which produce monoterpenes and sesquiterpenes, respectively. However, the specific details of the communication have not been elucidated. In the present study, we investigated the effects of overexpressing Litsea cubeba (Lour.) Persoon 3-hydroxy-3-methylglutaryl-coenzyme A synthase (LcHMGS) on the production of monoterpenes and sesquiterpenes. In addition, we also explored the flow of metabolic flux between the MEP and MVA pathways. We cloned LcHMGS and analyzed its expression pattern in various tissues. The overexpression of LcHMGS significantly increased the species and content of monoterpenes and sesquiterpenes. In addition, LcHMGS overexpression in plants induced such phenotypes as excessive growth, enlarged vegetative organs and early flowering by elevating the GA3 content. Our results demonstrate a metabolic engineering strategy to improve the yield of monoterpenes and sesquiterpenes and simultaneously increase the biomass of plants.

Funder

Fundamental Research Funds for the Central Non-profit Research Institution of Chinese Academy of Forestry

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3