Ca2+- and Zn2+-dependent nucleases co-participate in nuclear DNA degradation during programmed cell death in secretory cavity development in Citrus fruits

Author:

Liang Minjian12,Huai Bin1,Lin Junjun1,Liang Xiangxiu1,He Hanjun13,Bai Mei134,Wu Hong134

Affiliation:

1. Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University , Wushan Road, Guangzhou 510642 , China

2. College of Biology and Food Engineering, Guangdong University of Education , Guangzhou 510303 , China

3. Guangdong Technology Research Center for Traditional Chinese Veterinary Medicine and Natural Medicine, South China Agricultural University , Wushan Road, Guangzhou 510642 , China

4. Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University , Wushan Road, Guangzhou 510642 , China

Abstract

Abstract Calcium (Ca2+)- and zinc Zn2+-dependent nucleases play pivotal roles in plant nuclear DNA degradation in programmed cell death (PCD). However, the mechanisms by which these two nucleases co-participate in PCD-associated nuclear DNA degradation remain unclear. Here, the spatiotemporal expression patterns of two nucleases (CrCAN and CrENDO1) were analyzed qualitatively and quantitatively during PCD in secretory cavity formation in Citrus reticulata ‘Chachi’ fruits. Results show that the middle and late initial cell stages and lumen-forming stages are key stages for nuclear degradation during the secretory cavity development. CAN and ENDO1 exhibited potent in vitro DNA degradation activity at pH 8.0 and pH 5.5, respectively. Quantitative real-time reverse-transcription polymerase chain reaction, in situ hybridization assays, the subcellular localization of Ca2+ and Zn2+, and immunocytochemical localization showed that CrCAN was activated at the middle and late initial cell stages, while CrENDO1 was activated at the late initial cell and lumen-forming stages. Furthermore, we used immunocytochemical double-labelling to simultaneously locate CrCAN and CrENDO1. The DNA degradation activity of the two nucleases was verified by simulating the change of intracellular pH in vitro. Our results also showed that CrCAN and CrENDO1 worked respectively and co-participated in nuclear DNA degradation during PCD of secretory cavity cells. In conclusion, we propose the model for the synergistic effect of Ca2+- and Zn2+-dependent nucleases (CrCAN and CrENDO1) in co-participating in nuclear DNA degradation during secretory cavity cell PCD in Citrus fruits. Our findings provide direct experimental evidence for exploring different ion-dependent nucleases involved in nuclear degradation during plant PCD.

Funder

Open Competition Program of Ten Major Directions of Agricultural Science and Technology Innovation

14th Five-Year Plan of Guangdong Province

Key Realm R&D Program of Guangdong Province

National Natural Science Foundation of China

Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3