Revealing the salt tolerance mechanism of Tamarix hispida by large-scale identification of genes conferring salt tolerance

Author:

Wang Zhibo1,He Zihang1,Xu Xin1,Shi Xinxin1,Ji Xiaoyu1,Wang Yucheng12

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China

2. CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, 818 Beijing South Road, Urumqi 830011, China

Abstract

Abstract The identification of genes conferring salt tolerance is important to reveal plant salt tolerance mechanisms. Here, we employed yeast expression system combined with high-throughput sequencing to identify genes conferring salt tolerance from Tamarix hispida Willd. A total of 1224 potential genes conferring salt tolerance were identified. Twenty-one genes were randomly selected for functional characterization using transient transformation in T. hispida and stable transformation in Arabidopsis thaliana (L.) Heynh. More than 90% of studied genes are found to confer tolerance to salt stress, indicating that the identified genes are reliable. More than 75% of the identified genes were highly expressed in roots rather than in leaves, suggesting roots play an important role in salt tolerance. The genes belonging to ‘response to stimulus’ were highly accumulated , and these accounted for 32% of the total identified genes. In addition, the processes of ‘protein translation’, ‘osmotic adjustment’, ‘scavenging of free radicals’, ‘photosynthesis, detoxification of cells’, ‘protection of cellular macromolecules’ and ‘maintenance of cellular pH’ play important roles in salt tolerance. This study provides useful information on the salt tolerance mechanism of T. hispida and offers a valuable resource for exploring genes used in salt tolerance breeding.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3