Pit aspiration causes an apparent loss of xylem hydraulic conductivity in a subalpine fir (Abies mariesii Mast.) overwintering at the alpine timberline

Author:

Maruta Emiko1ORCID,Yazaki Kenichi2ORCID,Ogasa Mayumi Y3ORCID,Taneda Haruhiko4

Affiliation:

1. Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan

2. Soil-Plant Ecosystem Group, Hokkaido Research Center, Forestry and Forest Products Research Institute, 7 Hitsujigaoka, Toyohira, Sapporo, Hokkaido 062-8516, Japan

3. Forest Ecology Group, Kansai Research Center, Forestry and Forest Products Research Institute, 68 Nagaikyutaroh, Momoyama-choh, Fushimi-ku, Kyoto, Kyoto 612-0855, Japan

4. Department of Biological Sciences, Graduate School of Science, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

Abstract Conifers growing at the alpine timberline are exposed to combinatorial stresses that induce embolism in xylem during winter. We collected branches of Abies mariesii Mast. at the timberline on Mt Norikura of central Japan to evaluate the seasonal changes in the loss of xylem hydraulic conductivity (percent loss of hydraulic conductivity; PLC). Concurrently, we evaluated the distribution of embolized tracheids in native samples via cryo-scanning electron microscopic (cryo-SEM) observation in comparison with the drought-induced embolism samples used for the vulnerability curve. The twigs collected in late winter showed 100 PLC at a water potential of ~−3 MPa, and air-filled tracheids were observed sporadically in the cryo-SEM images. The cryo-SEM images also showed that nearly all pits of the samples from the timberline were aspirated in the xylem with 100 PLC. Conversely, in drought-induced samples used for vulnerability analysis, lower frequency of aspirated pits was observed at similar water potentials and all tracheids in the earlywood of xylem with 100 PLC were filled with air. We hypothesized that pit aspiration is the primary cause of the pronounced winter xylem conductivity loss at the timberline when water potential is near, but still above, the drought-induced vulnerability threshold. Pit aspiration before water loss may be an adaptation to severe winter conditions at timberlines to prevent widespread xylem embolism. The possible causes of pit aspiration are discussed in relation to complex stresses under harsh winter conditions at timberlines.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3