Morphological change and genome-wide transcript analysis of Haloxylon ammodendron leaf development reveals morphological characteristics and genes associated with the different C3 and C4 photosynthetic metabolic pathways

Author:

Zhang Lingling1,Peng Jieying1,Zhang Anna1,Zhang Sheng12

Affiliation:

1. College of Forestry, Northwest A&F University , 3 Taicheng Road, Yangling, Shaanxi 712100 , China

2. College of Life Science and Technology, Xinjiang University , 666 Shengli Road, Urumchi 830046 , China

Abstract

Abstract C4 photosynthesis outperforms C3 photosynthesis in natural ecosystems by maintaining a high photosynthetic rate and affording higher water-use and nitrogen-use efficiencies. C4 plants can survive in environments with poor living conditions, such as high temperatures and arid regions, and will be crucial to ecological and agricultural security in the face of global climate change in the future. However, the genetic architecture of C4 photosynthesis remains largely unclear, especially the genetic regulation of C4 Kranz anatomy. Haloxylon ammodendron is an important afforestation tree species and a valuable C4 wood plant in the desert region. The unique characteristic of H. ammodendron is that, during the seedling stage, it utilizes C3 photosynthesis, while in mature assimilating shoots (maAS), it switches to the C4 pathway. This makes an exceptional opportunity for studying the development of the C4 Kranz anatomy and metabolic pathways within individual plants (identical genome). To provide broader insight into the regulation of Kranz anatomy and non-Kranz leaves of the C4 plant H. ammodendron, carbon isotope values, anatomical sections and transcriptome analyses were used to better understand the molecular and cellular processes related to the development of C4 Kranz anatomy. This study revealed that H. ammodendron conducts C3 in the cotyledon before it switches to C4 in AS. However, the switching requires a developmental process. Stable carbon isotope discrimination measurements on three different developmental stages showed that young AS have a C3-like δ13C even though C4 Kranz anatomy is found, which is inconsistent with the anatomical findings. A C4-like δ13C can be measured in AS until they are mature. The expression analysis of C4 key genes also showed that the maAS exhibited higher expression than the young AS. In addition, many genes that may be related to the development of Kranz anatomy were screened. Comparison of gene expression patterns with respect to anatomy during leaf ontogeny provided insight into the genetic features of Kranz anatomy. This study helps with our understanding of the development of Kranz anatomy and provides future directions for studies on key C4 regulatory genes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Xinjiang Uygur Autonomous Region, China

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3