Localized stem heating from the rest to growth phase induces latewood-like cell formation and slower stem radial growth in Norway spruce saplings

Author:

Giovannelli Alessio1,Mattana Sara2,Emiliani Giovanni3,Anichini Monica4,Traversi Maria Laura1,Pavone Francesco Saverio56,Cicchi Riccardo26

Affiliation:

1. Istituto di Ricerca sugli Ecosistemi Terrestri (IRET), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy

2. Istituto Nazionale di Ottica (INO), Consiglio Nazionale delle Ricerche, Largo Fermi 6, Firenze 50125, Italy

3. Istituto Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy

4. Istituto per la Bioeconomia (IBE), Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy

5. Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via G. Sansone 1, Sesto Fiorentino 50019, Italy

6. Laboratorio Europeo di Spettroscopie Non-lineari (LENS), Via N. Carrara 1, Sesto Fiorentino 50019, Italy

Abstract

Abstract Recent climate projections predict a more rapid increase of winter temperature than summer and global temperature averages in temperate and cold environments. As there is relatively little experimental knowledge on the effect of winter warming on cambium phenology and stem growth in species growing in cold environments, the setting of manipulative experiments is considered of primary importance, and they can help to decipher the effect of reduced winter chilling and increased forcing temperatures on cambium reactivation, growth and xylem traits. In this study, localized stem heating was applied to investigate the effect of warming from the rest to the growth phase on cambium phenology, intra-annual stem growth dynamics and ring wood features in Picea abies (L.) H.Karst. We hypothesized that reduced winter chilling induces a postponed cambium dormancy release and decrease of stem growth, while high temperature during cell wall lignification determines an enrichment of latewood-like cells. The heating device was designed to maintain a +5 °C temperature delta with respect to air temperature, thus allowing an authentic scenario of warming. Continuous stem heating from the rest (November) to the growing phase determined, at the beginning of radial growth, a reduction of the number of cell layers in the cambium, higher number of cell layers in the wall thickening phase and an asynchronous stem radial growth when comparing heated and ambient saplings. Nevertheless, heating did not induce changes in the number of produced cell layers at the end of the growing season. The analyses of two-photon fluorescence images showed that woody rings formed during heating were enriched with latewood-like cells. Our results showed that an increase of 5 °C of temperature applied to the stem from the rest to growth might not influence, as generally reported, onset of cambial activity, but it could affect xylem morphology of Norway spruce in mountain environments.

Funder

Provincia Autonoma di Trento

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3