Transcriptional dynamics reveals the asymmetrical events underlying graft union formation in pecan (Carya illinoinensis)

Author:

Mo Zhenghai12ORCID,Zhang Yan12,Hou Mengxin12,Hu Longjiao12,Zhai Min12,Xuan Jiping13

Affiliation:

1. Institute of Botany, Jiangsu Province and Chinese Academy of Sciences , NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014 , China

2. Jiangsu Key Laboratory for the Research and Utilization of Plant Resources , NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014 , China

3. Jiangsu Engineering Research Center for the Germplasm Innovation and Utilization of Pecan , NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014 , China

Abstract

Abstract Grafting is a widely used technique for pecan propagation; however, the background molecular events underlying grafting are still poorly understood. In our study, the graft partners during pecan [Carya illinoinensis (Wangenh.) K. Koch] graft union formation were separately sampled for RNA-seq, and the transcriptional dynamics were described via weighted gene co-expression network analysis. To reveal the main events underlying grafting, the correlations between modules and grafting traits were analyzed. Functional annotation showed that during the entire graft process, signal transduction was activated in the scion, while messenger RNA splicing was induced in the rootstock. At 2 days after grafting, the main processes occurring in the scion were associated with protein synthesis and processing, while the primary processes occurring in the rootstock were energy release-related. During the period of 7–14 days after grafting, defense response was a critical process taking place in the scion; however, the main process functioning in the rootstock was photosynthesis. From 22 to 32 days after grafting, the principal processes taking place in the scion were jasmonic acid biosynthesis and defense response, whereas the highly activated processes associated with the rootstock were auxin biosynthesis and plant-type secondary cell wall biogenesis. To further prove that the graft partners responded asymmetrically to stress, hydrogen peroxide contents as well as peroxidase and β-1,3-glucanase activities were detected, and the results showed that their levels were increased in the scion not the rootstock at certain time points after grafting. Our study reveals that the scion and rootstock might respond asymmetrically to grafting in pecan, and the scion was likely associated with stress response, while the rootstock was probably involved in energy supply and xylem bridge differentiation during graft union formation.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Jiangxi Province

Central Government Demonstration Project of Forestry Science and Technology

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3