Intraspecific variation in photosynthetic thermal acclimation in Fagus crenata seedlings from two populations growing at different elevations in northern Japan

Author:

Akaji Yasuaki1ORCID,Torimaru Takeshi2,Akada Shinji3

Affiliation:

1. Biodiversity Division, National Institute for Environmental Studies , 16-2 Onogawa, Tsukuba, Ibaraki 305-8506 , Japan

2. Graduate School of Bioresources, Mie University , 1577 Kurimamachiya, Mie, Tsu 514-8507 , Japan

3. Faculty of Agriculture and Life Science, Hirosaki University , 3 Bunkyo-cho, Hirosaki, Aomori 036-8561 , Japan

Abstract

Abstract Plants can acclimate their photosynthesis to growth temperature, but the contribution of local adaptation to intraspecific variation in thermal acclimation of photosynthesis is not fully understood. Here, we experimentally investigated the photosynthetic thermal acclimation in Fagus crenata Blume seedlings from two populations growing at different elevations and temperature regimes (low- and high-elevation sites) in northern Japan. We acclimated seedlings for 14 to 23 days at daytime temperatures of either 22 °C (control) or 27 °C (warm treatment) and obtained photosynthetic temperature–response curves in the range of 19 to 32 °C. The optimum temperature of photosynthesis (Topt) was ~0.6 °C higher in seedlings acclimated at 27 °C than in those acclimated at 22 °C, and it was significantly lower in seedlings with higher stomatal sensitivity to leaf-to-air vapor pressure deficit than in those with lower sensitivity. The effects of warm treatment, population and treatment–population interaction on Topt were not significant in the two-way analysis of variance, but the effect of treatment became significant when stomatal sensitivity to leaf-to-air vapor pressure deficit was included as a covariate in the model. Structural equation modeling indicated that seedlings with lower root biomass had lower Topt because of the high stomatal sensitivity to leaf-to-air vapor pressure deficit. Structural equation modelling also indicated that the way of shifting the Topt differed between the two populations: seedlings from a high-elevation site depended on decreasing photosynthetic rates at low temperatures for the increase in Topt but seedlings from a low-elevation site did not. We suggest that the difference in thermal acclimation of photosynthesis between the two populations may reflect adaptation to different climate regimes and that belowground traits should be considered when investigating thermal acclimation capacity, especially in seedlings.

Funder

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3