The effect of nut growth limitation on triose phosphate utilization and downregulation of photosynthesis in almond

Author:

Gutiérrez-Gordillo S1ORCID,García-Tejero I F1,Durán Zuazo V H2,Diaz-Espejo A3,Hernandez-Santana V3

Affiliation:

1. IFAPA Centro “Las Torres” , Carretera Sevilla-Cazalla Km 12.2, 41200 Sevilla, Alcalá del Río , Spain

2. IFAPA Centro “Camino de Purchil” , Camino de Purchil s/n, 18004 Granada , Spain

3. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC) , Avda Reina Mercedes 10, 41012 Sevilla , Spain

Abstract

Abstract There is a controversy regarding when it is appropriate to apply the irrigation restriction in almond trees (Prunus dulcis Mill.) to save water without penalizing yield. We hypothesized that knowing when plants demand fewer photoassimilates would be a good indicator of less sensitivity of the crop to water deficit. One parameter that defines the photosynthetic capacity is the triose phosphate utilization (TPU). Due to its connection to the export of sugars from the leaves to other sink organs, it is a good candidate for being such an indicator. The objective was to analyze the seasonal evolution of the photosynthetic capacity of three almond cultivars (cvs Guara, Marta and Lauranne) subjected to water stress during vegetative, kernel-filling and postharvest stages. Two sustained deficit irrigation (SDI) treatments (SDI75 and SDI65 with water reductions of 25 and 35%, respectively) and a control treatment (FI) consisting of fully irrigated trees were applied. The response of curves AN-Ci was analyzed to assess the maximum carboxylation rate (Vcmax), maximum rate of electron transport (Jmax), TPU and mesophyll conductance to CO2. In addition, leaf water potential and yield were measured. Our experimental findings showed any significant differences in the variables analyzed among cultivars and irrigation treatments. However, consistent differences arose when the results were compared among the phenological stages. During the kernel-filling and the postharvest stages, a progressive limitation by TPU was measured, suggesting that the demand for photoassimilates by the plant was reduced. This result was supported by the correlation found between TPU and fruit growth rate. As a consequence, a downregulation in Jmax and Vcmax was also measured. This study confirms that the kernel-filling stage might be a good time to apply a reduction in the irrigation and suggests a method to detect the best moments to apply a regulated deficit irrigation in almond trees.

Funder

Impact of climate change and adaptation measures

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3