Characterizing the development of photosynthetic capacity in relation to chloroplast structure and mineral nutrition in leaves of three woody fruit species

Author:

Fu XinyuORCID,Zhang Jingyi,Zhou Linyao,Mo Weiping,Wang Huicong,Huang XumingORCID

Abstract

Abstract Plants have evolved different developmental patterns of photosynthetic capacity to better adapt to changing environmental conditions. Natural variation in photosynthetic development offers great potential for improving crop productivity. In this study, leaf developmental patterns were characterized in three woody fruit tree species with distinct photosynthetic capacity and growth habits. Changes in the photosynthetic rate, photosystem II (PSII) efficiency, chloroplast ultrastructure, activities of photosynthetic enzymes, and contents of carbohydrates and mineral nutrients were examined at five developmental stages to explore the interspecific variation in photosynthetic development. Rapid development of photosynthetic machinery and high photosynthetic capacity were found in Indian jujube (Ziziphus mauritiana) and apple (Malus domestica), whose net CO2 assimilation rate (A) peaked at full leaf expansion (FLE). Litchi (Litchi chinensis), a delayed-greening species, showed slow development of photosynthetic competence, with A peaked after FLE. The low photosynthetic capacity of litchi during early leaf expansion was associated with its delayed chloroplast development, low accumulation of starch, and low activities of ribulose-1,5-bisphosphate carboxylase/oxygenase and NADP-glyceraldehyde-3-phosphate dehydrogenase. Correlations between mineral contents and A across leaf stages and species identified manganese as the rate-limiting nutrients in photosynthetic development in new leaves. Foliar spray of MnSO4 solution (1 g l−1) induced a short-term increase in photosynthesis in young leaves of litchi. These findings suggest that a better understanding of interspecific variation in photosynthetic development facilitates the development of new strategies for improving the photosynthetic efficiency of woody fruit trees.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3