Ectopic expression of HIOMT improves tolerance and nitrogen utilization efficiency in transgenic apple under drought stress

Author:

Liang Bowen12ORCID,Wei Zhiwei13,Ma Changqing4,Yin Baoying2,Li Chao1,Ma Fengwang1ORCID

Affiliation:

1. College of Horticulture, Northwest A&F University State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, , Yangling 712100, Shaanxi, China

2. Hebei Agricultural University College of Horticulture, , Baoding 071001, Hebei, China

3. Zaozhuang University College of Food Sciences and Pharmaceutical Engineering, , Zaozhuang 277160, Shandong, China

4. Qingdao Agricultural University College of Horticulture, , Qingdao 266109, Shandong, China

Abstract

Abstract Melatonin enhances plant tolerance to various environmental stressors. Although exogenous application of melatonin has been investigated, the role of endogenous melatonin metabolism in the response of apples to drought stress and nutrient utilization remains unclear. Here, we investigated the effects of ectopically expressing the human melatonin synthase gene HIOMT on transgenic apple plants under drought stress conditions. The tolerance of transgenic apple lines that ectopically expressed HIOMT improved significantly under drought conditions. After 10 days of natural drought stress treatment, the transgenic apple plants showed higher relative water content, chlorophyll levels and Fv/Fm, and lower relative electrolyte leakage and hydrogen peroxide accumulation, than wild-type plants. The activities of peroxidase, superoxide dismutase and catalase, as well as genes in the ascorbate–glutathione cycle, increased more in transgenic apple plants than in the wild-type. The ectopic expression of HIOMT also markedly alleviated the inhibitory effects of long-term drought stress on plant growth, photosynthetic rate and chlorophyll concentrations in apple plants. The uptake and utilization of 15N increased markedly in the transgenic lines under long-term moderate drought stress. Drought stress sharply reduced the activity of enzymes involved in nitrogen metabolism, but ectopic expression of HIOMT largely reversed that response. The expression levels of genes of nitrogen metabolism and uptake were more upregulated in transgenic apple plants than the wild-type. Overall, our study demonstrates that ectopic expression of HIOMT enhanced the tolerance of apple plants to drought stress, and transgenic apple plants showed improved growth due to higher nutrient utilization efficiency under drought conditions.

Funder

Introduced Talents Project of Hebei Agricultural University

China Agriculture Research System

National Natural Science Foundation of China

Natural Science Foundation of Hebei

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3