Uniform carbon reserve dynamics along the vertical light gradient in mature tree crowns

Author:

Zahnd Cedric12,Zehnder Miro1,Arend Matthias13,Kahmen Ansgar1,Hoch Günter1

Affiliation:

1. Department of Environmental Sciences—Botany, University of Basel , Schönbeinstrasse 6, 4056 Basel , Switzerland

2. School of Biological Sciences, University of Utah , 257 South 1400 East, Salt Lake City, UT 84112 , USA

3. Department of Geobotany, University of Trier , Universitätsring 15, 54296 Trier , Germany

Abstract

Abstract Understanding the within-tree variability of non-structural carbohydrates (NSC) is crucial for interpreting point measurements and calculating whole-tree carbon balances. Yet, little is known about how the vertical light gradient within tree crowns influences branch NSC concentrations and dynamics. We measured NSC concentrations, irradiance and key leaf traits in uppermost, sun-exposed and lowest, shaded branches in the crowns of mature, temperate trees from nine species with high temporal resolution throughout one growing season. Measurements from two additional years allowed us to test the generality of our findings amongst climatically contrasting years. Despite the vertical light gradient, we found very similar seasonal NSC dynamics and concentrations between sun and shade branches in most species. This can at least partially be explained by acclimations in specific leaf area and photosynthetic leaf traits compensating the different light availability between the top and bottom canopy. Only in the ring-porous species Quercus petraea x robur and Fraxinus  excelsior was starch refilling after budbreak slower in lower branches. End-of-season NSC concentrations were similar between canopy positions and amongst observation years. Only Fagus sylvatica had 40 and 29% lower starch concentrations by the end of the extremely dry year 2020, relative to the other 2 years. We show that NSC measured anywhere in a tree crown is often representative of the whole crown. Overall, our results suggest that carbon reserve dynamics in trees are largely insensitive to both microclimatic gradients and inter-annual climatic variation, and only deviate under severe carbon deficits, as was presumably the case with Fagus in our study.

Funder

Swiss National Science Foundation

Swiss Federal Office for the Environment FOEN

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3