Selection of tree species for forests under climate change: is PSI functioning a better predictor for net photosynthesis and growth than PSII?

Author:

Pollastrini Martina1ORCID,Salvatori Elisabetta23,Fusaro Lina2,Manes Fausto2,Marzuoli Riccardo4,Gerosa Giacomo4,Brüggemann Wolfgang5,Strasser Reto Jorg67,Bussotti Filippo1

Affiliation:

1. Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Firenze, Piazzale delle Cascine 28, 50144, Firenze, Italy

2. Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy

3. ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, R.C. Casaccia, Rome, Italy

4. Department of Mathematics and Physics, Catholic University of Sacred Heart, Via Musei 41, 25121, Brescia, Italy

5. Department of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main and Senckenberg Biodiversity and Climate Research Center Frankfurt am Main, Biologicum (Flügel D, 1. OG, Raum 1.420) Campu Riedberg, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany

6. Bioenergetics and Microbiology Laboratory, University of Geneva, Jussy-Geneva CH-1254, Switzerland

7. North West University South Africa, Potchefstroom, North-West Province, South Africa

Abstract

Abstract A chlorophyll fluorescence (ChlF) assessment was carried out on oak seedlings (Quercus ilex L., Quercus pubescens Willd., Quercus frainetto Ten.) of Italian and Greek provenance, during the years 2017 and 2018, in a common garden in central Italy planted in 2017. This trial aimed to test the relative performances of the oak species in the perspective of assisted migration as part of the actions for the adaptation of forests to climate change. The assessment of the photosynthetic performance of the tree species included the analysis of the prompt chlorophyll fluorescence (PF) transient and the modulated reflection (MR) at 820 nm, leaf chlorophyll content, leaf gas exchange (net photosynthesis, stomatal conductance), plant growth (i.e., height) and mortality rate after 2 years from the beginning of the experiment. The assessment of the performance of the three oak species was carried out ‘in vivo’. Plants were generated from seeds and exposed to several environmental factors, including changing seasonal temperature, water availability, and soil biological and physical functionality. The results of PF indicate a stable functionality of the photosynthetic system PSII (expressed as FV/FM) across species and provenances and a decline in photochemistry functionality at the I–P phase (ΔVIP) in Q. frainetto, thus indicating a decline of the content of PSI in this species. This result was confirmed by the findings of MR analysis, with the speed of reduction and subsequent oxidation of PSI (VRED and VOX) strongly correlated to the amplitude of ΔVIP. The photosynthetic rates (net photosynthesis, PN) and growth were correlated with the parameters associated with PSI content and function, rather than those related to PSII. The low performance of Q. frainetto in the common garden seems to be related to early foliar senescence with the depletion of nitrogen, due to suboptimal climatic and edaphic conditions. Chlorophyll fluorescence allowed discrimination of populations of oak species and individuation of the less (or/and best) suitable species for future forest ecology and management purposes.

Funder

German Federal Ministry of Education and Science

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3