Leaf thermotolerance of Hevea brasiliensis clones: intra- versus interclonal variation and relationships with other functional traits

Author:

Hazir Mohd Hafiz Mohd123,Gloor Emanuel12,Docherty Emma12,Galbraith David12

Affiliation:

1. School of Geography , Faculty of Environment, , Leeds LS2 9JT , UK

2. University of Leeds , Faculty of Environment, , Leeds LS2 9JT , UK

3. Extension and Development Division, Malaysian Rubber Board , Bangunan Getah Asli, 148, Jalan Ampang, 50450 Kuala Lumpur , Malaysia

Abstract

Abstract Land surface temperature is predicted to increase by 0.2 °C per decade due to climate change, although with considerable regional variability, and heatwaves are predicted to increase markedly in the future. These changes will affect where crops can be grown in the future. Understanding the thermal limits of plant physiological functioning and how flexible such limits are is thus important. Here, we report on the measurements of a core foliar thermotolerance trait, T50, defined as the temperature at which the maximum quantum yield (Fv/Fm) of photosystem II declines by 50%, across nine different Malaysian Hevea brasiliensis clones. We explore the relative importance of interclonal versus intraclonal variation in T50 as well as its association with leaf and hydraulic traits. We find very low variation in T50 within individual clones (mean intraclonal coefficient of variation (CoV) of 1.26%) and little variation across clones (interclonal CoV of 2.1%). The interclonal variation in T50 was lower than for all other functional traits considered. The T50 was negatively related to leaf mass per area and leaf dry matter content, but it was not related to hydraulic traits such as embolism resistance (P50) or hydraulic safety margins (HSM50). The range of T50 observed (42.9–46.2 °C) is well above the current maximum air temperatures Tmax,obs (T50 − Tmax,obs >5.8 °C), suggesting that H. brasiliensis is likely thermally safe in this south-east Asian region of Malaysia.

Funder

Malaysian Rubber Board

Climate Research Bursary Fund

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3