Costs and benefits of gas inside wood and its relationship with anatomical traits: a contrast between trees and lianas

Author:

Souza Dias Arildo12,Oliveira Rafael Silva3,Martins Fernando Roberto3

Affiliation:

1. Plant Biology Graduate Course, Department of Plant Biology, Institute of Biology, Monteiro Lobato Street, 255, University of Campinas - UNICAMP, PO Box 6109, Campinas, SP 13083-970, Brazil

2. Institute for Physical Geography, Goethe University, Altenhöferallee 1, Frankfurt am Main 60438, Germany

3. Department of Plant Biology, Institute of Biology, Monteiro Lobato Street, 255, University of Campinas - UNICAMP, PO Box 6109, Campinas, SP 13083-970, Brazil

Abstract

Abstract Gas inside wood plays an important role in plant functioning, but there has been no study examining the adaptive nature of gas inside wood across plants differing in biomechanical demands. Using a comparative approach, we measured gas volumetric content, xylem’s anatomical traits and wood density of 15 tree and 16 liana species, to test whether gas content varies between these plant types strongly differing in their biomechanical demands. We asked (i) whether trees and lianas differ in gas content and (ii) how anatomical traits and wood density are related to gas content. Lianas had significantly less gas content in their branches compared with tree species. In tree species, gas content scaled positively with fiber, vessel and xylem cross-sectional area and fiber and vessel diameter, and negatively with dry-mass density. When pooling trees and lianas together, fiber cross-sectional area was the strongest predictor of gas content, with higher xylem cross-sectional area of fiber associated with higher gas content. In addition, we showed, through a simple analytical model, that gas inside wood increases the minimum branch diameter needed to prevent rupture, and this effect was stronger on trees compared with lianas. Our results support the view that gas inside wood plays an important role in the evolution of biomechanical functioning in different plant forms. Gas inside wood may also play an important role in physiological activities such as water transport, storage, photosynthesis and respiration, but it is still unknown whether these roles are or are not secondary to the mechanical support.

Funder

National Council for Scientific and Technological Development

São Paulo Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Reference75 articles.

1. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III,2009

2. An overview of the anatomy, development and evolution of the vascular system of lianas;Angyalossy;Plant Ecolog Div,2012

3. The role of wood mass density and mechanical constraints in the economy of tree architecture;Anten;Am Nat,2010

4. Evolution of xylem physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3