Red pigments in autumn leaves of Norway maple do not offer significant photoprotection but coincide with stress symptoms

Author:

Mattila Heta12ORCID,Tyystjärvi Esa1ORCID

Affiliation:

1. University of Turku Department of Life Technologies/Molecular Plant Biology, , 20014 Turku , Finland

2. Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro , Portugal

Abstract

Abstract The reasons behind autumn colors, a striking manifestation of anthocyanin synthesis in plants, are poorly understood. Usually, not all leaves of an anthocyanic plant turn red or only a part of the leaf blade turns red. In the present study, we compared green, red and yellow sections of senescing Norway maple leaves, asking if red pigments offer photoprotection, and if so, whether the protection benefits the senescing tree. Green and senescing maple leaves were illuminated with strong white, green or red light in the absence or presence of lincomycin which blocks photosystem II (PSII) repair. Irrespective of the presence of anthocyanins, senescing leaves showed weaker capacity to repair PSII than green leaves. Furthermore, the rate of photoinhibition of PSII did not significantly differ between red and yellow sections of senescing maple leaves. We also followed pigment contents and photosynthetic reactions in individual leaves, from the end of summer until abscission of the leaf. In maple, red pigments accumulated only during late senescence, but light reactions stayed active until most of the chlorophyll had been degraded. PSII activity was found to be lower and non-photochemical quenching higher in red leaf sections, compared with yellow sections of senescing leaves. Red leaf sections were also thicker. We suggest that the primary function of anthocyanin synthesis is not to protect senescing leaves from excess light but to dispose of carbohydrates. This would relieve photosynthetic control, allowing the light reactions to produce energy for nutrient translocation at the last phase of autumn senescence when carbon skeletons are no longer needed.

Funder

Academy of Finland

Osk. Huttunen Foundation

Emil Aaltonen Foundation

Ella and Georg Ehrnrooth Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3