Physiological and transcriptomic characterization of cadmium toxicity in Moso bamboo (Phyllostachys edulis), a non-timber forest species

Author:

Yang Fan1,Chang Yu Zhen1,Zheng Yi Ting1,Pan Xianyu1,Ji Haibao1,Shao Ji Feng1

Affiliation:

1. State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University , Wusu Road 666, Lin’An 311300 , China

Abstract

Abstract Cadmium pollution in Moso bamboo forests poses a potential threat to the sustainable development of the bamboo industry. However, the effects of cadmium toxicity on Moso growth and its mechanisms of adaptation to cadmium stress are poorly understood. In this study, the physiological and transcriptional response of Moso to cadmium stress was investigated in detail using Moso seedlings in a hydroponic system. Cadmium toxicity severely inhibited the growth of roots but had little effect on biomass accumulation in the aerial parts. Cadmium accumulation in roots and aerial parts increased as external cadmium increased, with cadmium mainly localized in the epidermis and pericycle cells in the roots. The uptake and root-to-shoot translocation of cadmium was stimulated, but the photosynthetic process was suppressed under cadmium stress. A total of 3469 differentially expressed genes were identified from the transcriptome profile and those involved in cadmium uptake, transportation and detoxification were analyzed as candidates for having roles in adaptation to cadmium stress. The results suggested that Moso is highly efficient in cadmium uptake, xylem loading and translocation, as well as having a high capacity for cadmium accumulation. This work also provided basic information on physiological and transcriptional responses of Moso to cadmium toxicity.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Provincial, China

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3