Affiliation:
1. Departamento de Ciencias Ambientales, Universidad de Castilla-La Mancha , Av. Carlos III s/n, 45071 Toledo , Spain
2. Department of Biology, California State University , 9001 Stockdale Highway, Bakersfield, CA 93311 , USA
Abstract
Abstract
Extreme drought events during post-fire regeneration are becoming increasingly frequent in Mediterranean-type ecosystems. Understanding how plants with different traits and origins respond to such conditions during early life stages is therefore critical for assessing the effect of climate change. Here, seedlings of three Cistus (semi-deciduous malacophylls from the Mediterranean Basin) and three Ceanothus (evergreen sclerophylls from California) species, two post-fire seeder genera with contrasting leaf traits, were subjected to complete water deprivation for 3 months in a common garden experiment. The leaf and plant structure and plant tissue water relations were characterized before the drought, and the functional responses (water availability, gas exchange and fluorescence) were monitored during the drought. Both genera exhibited contrasting leaf structure and tissue water relations traits, with higher leaf area and specific leaf area as well as higher osmotic potential at maximum turgor and turgor loss point in Cistus than Ceanothus. During drought, Ceanothus showed a more conservative use of water than Cistus, with a water potential less sensitive to decreasing soil moisture and a strong decline in photosynthesis and stomatal conductance in response to water deficit, but also a level of fluorescence more responsive to drought than Cistus. However, we could not find a different degree of drought resistance between the genera. This was particularly clear between Cistus ladanifer L. and Ceanothus pauciflorus DC., the two most functionally contrasting species, but at the same time, the two most drought-resistant. Our findings demonstrate that species with different leaf traits and functional responses to water stress may not differ in their degree of drought resistance, at least during the seedling stage. This underlines the need to take general categorizations by genus or functional types with caution and to deepen our knowledge about the Mediterranean-type species ecophysiology, especially during early life stages, in order to anticipate their vulnerability to climate change.
Funder
FOCCLIM
INFORICAM
Spanish Ministry of Science and Innovation
California State University
University of Castilla-La Mancha
Publisher
Oxford University Press (OUP)