Is NPP proportional to GPP? Waring’s hypothesis 20 years on

Author:

Collalti A12ORCID,Prentice I C345ORCID

Affiliation:

1. National Research Council of Italy–Institute for Agriculture and Forestry Systems in the Mediterranean (CNR-ISAFOM), Rende, CS, Italy

2. Foundation Euro-Mediterranean Centre on Climate Change–Impacts on Agriculture, Forests and Ecosystem Services Division (CMCC-IAFES), Viterbo, Italy

3. Department of Life Sciences, AXA Chair of Biosphere and Climate Impacts, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, UK

4. Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia

5. Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China

Abstract

Abstract Gross primary production (GPP) is partitioned to autotrophic respiration (Ra) and net primary production (NPP), the latter being used to build plant tissues and synthesize non-structural and secondary compounds. Waring et al. (1998; Net primary production of forests: a constant fraction of gross primary production? Tree Physiol 18:129–134) suggested that a NPP:GPP ratio of 0.47 ± 0.04 (SD) is universal across biomes, tree species and stand ages. Representing NPP in models as a fixed fraction of GPP, they argued, would be both simpler and more accurate than trying to simulate Ra mechanistically. This paper reviews progress in understanding the NPP:GPP ratio in forests during the 20 years since the Waring et al. paper. Research has confirmed the existence of pervasive acclimation mechanisms that tend to stabilize the NPP:GPP ratio and indicates that Ra should not be modelled independently of GPP. Nonetheless, studies indicate that the value of this ratio is influenced by environmental factors, stand age and management. The average NPP:GPP ratio in over 200 studies, representing different biomes, species and forest stand ages, was found to be 0.46, consistent with the central value that Waring et al. proposed but with a much larger standard deviation (±0.12) and a total range (0.22–0.79) that is too large to be disregarded.

Funder

H2020 European Research Council

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3