Elevated temperature and ozone modify structural characteristics of silver birch (Betula pendula) leaves

Author:

Hartikainen Kaisa1ORCID,Kivimäenpää Minna1,Nerg Anne-Marja1,Mäenpää Maarit2,Oksanen Elina2,Rousi Matti3,Holopainen Toini1

Affiliation:

1. Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, Yliopistonranta 1, Kuopio FI-70211, Finland

2. Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, Yliopistokatu 2, Joensuu FI-80101, Finland

3. Natural Resources Institute Finland, PO Box 2, Latokartanonkaari 9, Helsinki FI-00790, Finland

Abstract

Abstract To study the effects of slightly elevated temperature and ozone (O3) on leaf structural characteristics of silver birch (Betula pendula Roth), saplings of four clonal genotypes of this species were exposed to elevated temperature (ambient air temperature +0.8–1.0 °C) and elevated O3 (1.3–1.4× ambient O3), alone and in combination, in an open-air exposure field over two growing seasons (2007 and 2008). So far, the impacts of moderate elevation of temperature or the combination of elevated temperature and O3 on leaf structure of silver birch have not been intensively studied, thus showing the urgent need for this type of studies. Elevated temperature significantly increased leaf size, reduced non-glandular trichome density, decreased epidermis thickness and increased plastoglobuli size in birch leaves during one or both growing seasons. During the second growing season, O3 elevation reduced leaf size, increased palisade layer thickness and decreased the number of plastoglobuli in spongy cells. Certain leaf structural changes observed under a single treatment of elevated temperature or O3, such as increase in the amount of chloroplasts or vacuole, were no longer detected at the combined treatment. Leaf structural responses to O3 and rising temperature may also depend on timing of the exposure during the plant and leaf development as indicated by the distinct changes in leaf structure along the experiment. Genotype-dependent cellular responses to the treatments were detected particularly in the palisade cells. Overall, this study showed that even a slight but realistic elevation in ambient temperature can notably modify leaf structure of silver birch saplings. Leaf structure, in turn, influences leaf function, thus potentially affecting acclimation capacity under changing climate.

Funder

Academy of Finland

Finnish Graduate School in Environmental Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3