The threshold between life and death in Cistus albidus L. seedlings: mechanisms underlying drought tolerance and resilience

Author:

Pérez-Llorca Marina12,Caselles Vicent1,Müller Maren1,Munné-Bosch Sergi12

Affiliation:

1. Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain

2. Institute for Research on Biodiversity, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain

Abstract

Abstract Drought can lead to important shifts in population dynamics if it occurs during seedling establishment. With the aim of elucidating the underlying mechanisms of drought tolerance and resilience, here we monitored the survival of seedlings of the Mediterranean shrub Cistus albidus L. throughout a year growing in the natural Park of the Montserrat Mountains (Spain) and, additionally, we studied the response to severe drought and subsequent recovery after rewatering of seedlings grown in growth chambers. To find possible mechanisms explaining how seedlings respond to drought, growth and survival together with physiological-related parameters such as chlorophyll contents, vitamin E and stress-related phytohormones were measured. We found that survival decreased by 30% at the end of summer and that the main proxy of seedling survival was total chlorophyll. This proxy was further confirmed in the growth chambers, where we found that seedlings that recovered from drought had higher levels of total chlorophyll compared with the seedlings that did not recover. Furthermore, modulation of vitamin E and jasmonates contents appeared to be crucial in the drought response of C. albidus seedlings. We propose a prediction model of survival that includes total chlorophyll height, leaf mass area and maximum photosystem II efficiency with chlorophyll contents being a good long-term predictor of C. albidus seedling survival under severe stress, which, in turn, could help to better foresee population fluctuations in the field.

Funder

AEI

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3