MiRNA-target pairs regulate adventitious rooting in Populus: a functional role for miR167a and its target Auxin response factor 8

Author:

Cai Heng12,Yang Chunxia123,Liu Sian12,Qi Haoran12,Wu Ling12,Xu Li-An12,Xu Meng12ORCID

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

2. College of Forestry, Nanjing Forestry University, Nanjing 210037, China

3. Jiangxi Academy of Forestry, Nanchang 330013, China

Abstract

Abstract The ability of a plant to form roots from its non-root tissues is ecologically advantageous during rapid adaptation to a changing environment. Although this biological phenomenon has been widely utilized for cuttings in many economically important agronomic and tree species, its genetic and developmental mechanisms have been poorly understood. In this study, we conducted an association analysis of small RNAs, the degradome and the transcriptome of adventitious rooting in poplar softwood cuttings, which revealed that 373 miRNA-target pairs were detected. Of these, 72 significantly differentially expressed targets were screened as likely to modulate adventitious root (AR) development, in conjunction with plant hormone signal transduction. Poplar miR167a and its targets PeARF6s and PeARF8s were subjected to functional verification of their ability to mediate plant growth and hormone signal transduction. Overexpression of miR167a inhibited target transcripts and improved lateral root (LR) development in poplar, while overexpressing PeARF8.1mut increased AR numbers and slightly inhibited LR development. Taken together, these results suggest that miR167a-PeARF8.1 modules play crucial roles in regulating AR and LR development in poplar and improve the adaptation of poplar to more complex environments.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Collaborative Innovation Plan of Jiangsu Higher Education

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3