Respiration in light of evergreen and deciduous woody species and its links to the leaf economic spectrum

Author:

Li Xueqin1ORCID,Chen Xiaoping12ORCID,Li Jinlong1ORCID,Wu Panpan1,Hu Dandan1,Zhong Quanlin1,Cheng Dongliang12

Affiliation:

1. Institute of Geography, Fujian Normal University , No.8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007 , China

2. Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University , No. 8 Shangsan Road, Cangshan District, Fuzhou, Fujian 350007 , China

Abstract

Abstract Leaf respiration in the light (Rlight) is crucial for understanding the net CO2 exchange of individual plants and entire ecosystems. However, Rlight is poorly quantified and rarely discussed in the context of the leaf economic spectrum (LES), especially among woody species differing in plant functional types (PFTs) (e.g., evergreen vs. deciduous species). To address this gap in our knowledge, Rlight, respiration in the dark (Rdark), light-saturated photosynthetic rates (Asat), leaf dry mass per unit area (LMA), leaf nitrogen (N) and phosphorus (P) concentrations, and maximum carboxylation (Vcmax) and electron transport rates (Jmax) of 54 representative subtropical woody evergreen and deciduous species were measured. With the exception of LMA, the parameters quantified in this study were significantly higher in deciduous species than in evergreen species. The degree of light inhibition did not significantly differ between evergreen (52%) and deciduous (50%) species. Rlight was significantly correlated with LES traits such as Asat, Rdark, LMA, N and P. The Rlight vs. Rdark and N relationships shared common slopes between evergreen and deciduous species, but significantly differed in their y-intercepts, in which the rates of Rlight were slower or faster for any given Rdark or N in deciduous species, respectively. A model for Rlight based on three traits (i.e., Rdark, LMA and P) had an explanatory power of 84.9%. These results show that there is a link between Rlight and the LES, and highlight that PFTs is an important factor in affecting Rlight and the relationships of Rlight with Rdark and N. Thus, this study provides information that can improve the next generation of terrestrial biosphere models (TBMs).

Funder

Yangjifeng National Nature Reserve of Jiangxi

National Natural Science Foundation of China

Key Public Welfare Project of Fujian Provincial Department of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3