Function of a non-enzymatic hexokinase LcHXK1 as glucose sensor in regulating litchi fruit abscission

Author:

Yi Jun-Wen1234,Ge Han-Tao12,Abbas Farhat12,Zhao Jie-Tang12ORCID,Huang Xu-Ming12ORCID,Hu Gui-Bing12,Wang Hui-Cong125ORCID

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Litchi Engineering Research Center/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China , College of Horticulture, , Guangzhou 510642 , China

2. South China Agricultural University , College of Horticulture, , Guangzhou 510642 , China

3. Guangdong Provincial Key Laboratory of Silviculture , Protection and Utilization, , Guangzhou 510520 , China

4. Guangdong Academy of Forestry , Protection and Utilization, , Guangzhou 510520 , China

5. Department of Life Sciences and Technology, Yangtze Normal University , Fuling 408100 , China

Abstract

Abstract Fruit abscission is a severe hindrance to commercial crop production, and a lack of carbohydrates causes fruit abscission to intensify in a variety of plant species. However, the precise mechanism by which carbohydrates affect fruit setting potential has yet to be determined. In the current study, we noticed negative correlation between hexose level and fruit setting by comparing different cultivars, bearing shoots of varying diameters, and girdling and defoliation treatments. The cumulative fruit-dropping rate was significantly reduced in response to exogenous glucose dipping. These results suggested that hexose, especially glucose, is the key player in lowering litchi fruit abscission. Moreover, five putative litchi hexokinase genes (LcHXKs) were isolated and the subcellular localization as well as activity of their expressed proteins in catalyzing hexose phosphorylation were investigated. LcHXK2 was only found in mitochondria and expressed catalytic protein, whereas the other four HXKs were found in both mitochondria and nuclei and had no activity in catalyzing hexose phosphorylation. LcHXK1 and LcHXK4 were found in the same cluster as previously reported hexose sensors AtHXK1 and MdHXK1. Furthermore, VIGS-mediated silencing assay confirms that LcHXK1 suppression increases fruit abscission. These findings revealed that LcHXK1 functions as hexose sensor, negatively regulating litchi fruit abscission.

Funder

Guangzhou Science and Technology Project

China Litchi and Longan Industry Technology Research System

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3