The adaptation of root cell wall pectin to copper toxicity in two citrus species differing in copper tolerance: remodeling and responding

Author:

Lin Mei-lan1,Lu Fei2,Zhou Xin2,Xiong Xing2,Lai Ning-wei2,Li-song Chen2ORCID,Zeng-rong Huang2ORCID

Affiliation:

1. Department of Agricultural Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University, Shangxiadian Road, Cangshan District , Fuzhou 350002 , China

2. Department of Agricultural Resources and Environment, College of Resources and Environment, Fujian Agriculture and Forestry University , Shangxiadian Road, Cangshan District, Fuzhou 350002 , China

Abstract

Abstract Citrus species are prone to suffer from copper (Cu) toxicity because of improper application of Cu-based agrochemicals. Copper immobilization mediated by pectin methylesterase (PME) in the root cell wall (CW) is effective for Cu detoxification. However, the underlying mechanisms of the structural modification and stress responses of citrus root CW pectin to Cu toxicity have been less discussed. In the present study, seedlings of ‘Shatian pummelo’ (Citrus grandis L. Osbeck) and ‘Xuegan’ (Citrus sinensis L. Osbeck), which differ in Cu tolerance, were irrigated with nutrient solution containing 0.5 (as control), 100, 300 or 500 μM Cu for 18 weeks in sandy culture or 24 h in hydroponics. At the end of treatments in the 18-week sandy culture, Cu toxicity on CW pectin content, Cu distribution, degree of pectin methylesterification (DPM) and the PME enzyme activity were discussed. At the genome-wide level, PME gene family was identified from the two citrus species, and qRT-PCR array of citrus PMEs under control and 300 μM Cu stress for 18 weeks were performed to screen the Cu-responsive PME genes. Moreover, the candidate genes that responded to Cu toxicity were further examined within 24 h. The results showed that Cu toxicity increased the root CW pectin content. The root CW pectin under Cu toxicity was remodeled by upregulation of the expression of the Cu-responsive PME genes followed by increasing PME activity, which mainly promoted low methylesterased pectin level and the Cu content on root CW pectin. Compared with C. sinensis, C. grandis root CW had a lower DPM and higher Cu content on the Cu-stressed root CW pectin, contributing to its higher Cu tolerance. Our present study provided theoretical evidence for root CW pectin remodeling in response to Cu toxicity of citrus species.

Funder

Natural Science Foundation of Fujian Province of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3