Xylem sap phosphorus sampling using microdialysis—a non-destructive high sampling frequency method tested under laboratory and field conditions

Author:

Jeřábek Jakub1ORCID,Rinderer Michael2,Gessler Arthur34,Weiler Markus2

Affiliation:

1. Department of Landscape Water Conservation, Faculty of Civil Engineering, Czech Technical University in Prague, Prague, Czech Republic

2. Chair of Hydrology, Faculty of Environment and Natural Resources, University of Freiburg, Germany

3. Forest Dynamics, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland

4. Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland

Abstract

Abstract For a better understanding of plant nutrition processes, it is important to study the flux of nutrients within plants. However, existing xylem sap sampling methods are typically destructive and do not allow for repeated, highly frequent measurements of nutrient concentration. In this paper, we present a novel use of microdialysis (MD) for characterizing xylem sap phosphate (PO43−) concentration as a possible alternative to destructive sampling. First, MD probes were tested under laboratory conditions in vitro, in a stirred solution test, and in vivo, using beech tree stem segments. Exponential decline in the relative recovery (RR) with an increasing MD pumping rate allows for determining an optimal sampling interval (i.e., the maximum amount of sample volume with the minimum required concentration). The RR changed only minimally, with a change in the simulated sap flow velocity during the in vivo stem segment test. This suggests that MD can be applied over a range of naturally occurring sap flow velocities. Differences in the ionic strength between the xylem sap and the perfusate pumped through the MD did not influence the RR. Then, MD was successfully applied in a 24 h field campaign in two beech trees of different ages and allowed for in situ assessments of the diurnal variation of PO43− concentration and (together with xylem flow measurements) flux variability in living trees. Both beech trees exhibited the same diurnal pattern in PO43− concentrations with higher concentrations in the younger tree. The xylem PO43− concentration measured with MD was in the same order of magnitude as that received through destructive sampling in the younger tree. The MD probes did not show a decline in RR after the field application. We showed that MD can be applied to capture the PO43− concentration dynamics in the xylem sap with bihourly resolution under field conditions.

Funder

German Research Foundation

German Federal Environmental Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3