Affiliation:
1. Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, College of Forestry, Shenyang Agricultural University , NO. 120, Dongling Road, Shenhe District, Shenyang , China
Abstract
Abstract
Lycium ruthenicum is an important ecoeconomic thorny shrub. In this study, the L. ruthenicum plants of a clone showed two types of ‘fewer leaves without thorn’ and ‘more leaves with thorns’ under the same condition after transplanting. Microscopic observation revealed that the apical buds of the thornless (Thless) and thorny (Thorny) branches should be selected as materials for further study. RNA-Seq analysis showed that the KEGG pathway of starch and sucrose metabolism and differentially expressed genes of sugar transport protein 13 (SUT13), sucrose synthase (SUS), trehalose-phosphate phosphatase (TPP) and trehalose-phosphate synthase (TPS) were significantly up-regulated in Thorny. The results of qRT-PCR confirmed the accuracy and credibility of the RNA-Seq. The content of sucrose in Thorny was significantly higher than that in Thless, but the content of trehalose-6-phosphate (T6P) was opposite. Leaf-clipping treatments reduced sucrose content and inhibited the occurrence/development of branch-thorns; exogenous sucrose of 16 g l−1 significantly promoted the occurrence and growth of branch-thorns, and the promotion effects were significantly higher than those treated with non-metabolizable sucrose analogs (isomaltolose and melitose). These findings suggested that sucrose might play a dual role of energy and signal in the occurrence of branch-thorns. Higher sucrose supply in apical buds from more leaves promoted the occurrence of branch-thorns via a lower content of T6P and higher expression levels of SUS, TPP and TPS, whereas fewer leaves inhibited the occurrence. The molecular hypothesis model of the leaf number/sucrose supply regulating the occurrence of branch-thorns in L. ruthenicum was established in the study, which provides foundation for breeding both Thless L. ruthenicum and Thless types of other species.
Funder
National Natural Science Foundation of China
Scientific Research Fund of Liaoning Provincial Education Department
Publisher
Oxford University Press (OUP)
Reference53 articles.
1. Overexpression of a sucrose synthase gene indirectly improves cotton fiber quality through sucrose cleavage;Ahmed;Front Plant Sci,2020
2. Sucrose is an early modulator of the key hormonal mechanisms controlling bud out-growth in Rosa hybrida;Barbier;J Exp Bot,2015
3. SUT2, a putative sucrose sensor in sieve elements;Barker;Plant Cell,2000
4. Current research state and exploitation of Lycium ruthenicum Murr;Chen;Heilongjiang Agri Sci,2008
5. Research advances in trehalose metabolism and trehalose-6-phosphate signaling in plants (in China);Chen;Plant Physiol,2014
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献