The mycorrhizal-induced growth promotion and insect resistance reduction in Populus alba × P. berolinensis seedlings: a multi-omics study

Author:

Jiang Dun12,Lin Ruoxuan3,Tan Mingtao12,Yan Junxin4,Yan Shanchun12ORCID

Affiliation:

1. Department of Forestry School of Forestry, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China

2. College of Forestry Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China

3. Department of Economics College of Economics and Management, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R.China

4. Department of Landscape Architecture College of Landscape Architecture, Northeast Forestry University, 26 Hexing Road, Xiangfang District, Harbin 150040, P. R. China

Abstract

Abstract Arbuscular mycorrhizal (AM) fungi are an alternative to chemical insecticides or fertilizers, and there is an urgent need to extend the application of AM fungi to woody plants. This study aims to investigate the growth and resistance against the gypsy moth larvae (Lymantria dispar) in Glomus intraradices-colonized Populus alba × P. berolinensis seedlings, and to unravel the transcriptome and metabolome phenotypes recruited by AM fungus colonization that affect plant growth and insect resistance. Our results showed a positive mycorrhizal growth response, i.e., growth and biomass of mycorrhizal seedlings were enhanced. However, AM fungus inoculation reduced the resistance of poplar to gypsy moth larvae, as evidenced by the decreased carbon/nitrogen ratio in leaves, as well as the increased larval growth and shortened larval developmental duration. Transcriptome analysis revealed that in both auxin and gibberellin signaling transductions, all nodes were responsive to AM symbiosis and most differentially expressed genes belonging to effectors were up-regulated in mycorrhizal seedlings. Furthermore, the two key enzymes (4-coumarate-CoA ligase and trans-cinnamate 4-monooxygenase) involved in the synthesis of p-Coumaroyl-CoA, an initial metabolite in flavonoid biosynthesis and the first rate-limiting enzyme (chalcone synthase) in flavonoid biosynthesis, were down-regulated at the transcriptional level. Consistent with the transcriptome results, metabolome analysis found that the amounts of all differentially accumulated flavonoid compounds (e.g., catechin and quercetin) identified in mycorrhizal seedlings were decreased. Taken together, these findings highlight the diverse outcomes of AM fungi–host plant–insect interaction and reveal the regulatory network of the positive mycorrhizal growth response and mycorrhizal-induced reduction of insect resistance in poplar.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3