Constitutive phenolic biomarkers identify naïve Quercus agrifolia resistant to Phytophthora ramorum, the causal agent of sudden oak death

Author:

Conrad Anna O1,McPherson Brice A2,Wood David L2,Madden Laurence V3,Bonello Pierluigi1

Affiliation:

1. Department of Plant Pathology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA

2. Department of Environmental Science, Policy, and Management, University of California, Berkeley, Mulford Hall, Berkeley, CA 94720, USA

3. Department of Plant Pathology, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA

Abstract

Abstract Sudden oak death, caused by the invasive pathogen Phytophthora ramorum Werres, de Cock & Man in't Veld, can be deadly for Quercus agrifolia Neé (coast live oak, CLO). However, resistant trees have been observed in natural populations. The objective of this study was to examine if pre-attack (constitutive) levels of phenolic compounds can be used as biomarkers to identify trees likely to be resistant. Naïve trees were selected from a natural population and phloem was sampled for analysis of constitutive phenolics. Following P. ramorum inoculation, trees were phenotyped to determine disease susceptibility and constitutive phenolic biomarkers of resistance were identified. Seasonal variation in phloem phenolics was also assessed in a subset of non-inoculated trees. Four biomarkers, including myricitrin and three incompletely characterized flavonoids, together correctly classified 80% of trees. Biomarker levels were then used to predict survival of inoculated CLO and the proportion of resistant trees within a subset of non-inoculated trees from the same population. Levels of five phenolics were significantly affected by season, but with no pronounced variation in average levels among seasons. These results suggest that pre-infection levels of specific phenolic compounds (i.e., biomarkers) can identify trees naturally resistant to this invasive forest pathogen. Knowledge of resistant trees within natural populations may be useful for conserving and breeding resistant trees and for disease management.

Funder

United States Department of Agriculture

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3