Vertical gradients in foliar physiology of tall Picea sitchensis trees

Author:

Kerhoulas Lucy P1,Weisgrau Ariel S1,Hoeft Emily C2,Kerhoulas Nicholas J3

Affiliation:

1. Department of Forestry and Wildland Resources, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA

2. Department of Biological Sciences, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA

3. Department of Wildlife, Humboldt State University, 1 Harpst Street, Arcata, CA 95521, USA

Abstract

Abstract In tall conifers, leaf structure can vary dramatically with height due to decreasing water potential (Ψ) and increasing light availability. This variation in leaf structure can have physiological consequences such as increased respiratory costs, reduced internal carbon dioxide conductance rates and ultimately reduced maximum photosynthetic rates (Amax). In Picea sitchensis (Bong.) Carrière, the leaf structure varies along the vertical gradient in ways that suggest compensatory changes to enhance photosynthesis, and this variation seems to be driven largely by light availability rather than by Ψ. These trends in leaf structure coupled with remarkably fast growth rates and dependence on moist environments inspire two important questions about P. sitchensis: (i) does foliar water uptake minimize the adverse effects of decreasing Ψ with height on leaf structure, and (ii) do trends in leaf structure increase photosynthetic rates despite increasing height? To answer these questions, we measured foliar water uptake capacity, predawn (Ψpd) and midday water potential and gas-exchange rates as they varied between 25- and 89-m heights in 300-year-old P. sitchensis trees in northwestern California. Our major findings for P. sitchensis include the following: (i) foliar water uptake capacity was quite high relative to published values for other woody species; (ii) foliar water uptake capacity increased between the crown base and treetop; (iii) wet season Ψpd was higher than predicted by the gravitational potential gradient, indicating foliar water uptake; and (iv) the maximum photosynthetic rate increased with height, presumably due to shifts in leaf structure between the crown base and treetop, mitigating height-related decreases in Amax. These findings suggest that together, the use of fog, dew and rain deposits on leaves and shifts in the leaf structure to conserve and possibly enhance photosynthetic capacity likely contribute to the rapid growth rates measured in this species.

Funder

Save the Redwoods League

US Department of Agriculture National Institute of Food and Agriculture McIntire-Stennis

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3