Characterization of the developmental dynamics of the elongation of a bamboo internode during the fast growth stage

Author:

Wei Qiang12ORCID,Guo Lin12,Jiao Chen3,Fei Zhangjun3,Chen Ming12,Cao Junjie12,Ding Yulong12,Yuan Qisen4

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China

2. Bamboo Research Institute, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China

3. Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA

4. International Education College, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China

Abstract

Abstract Previous studies on the fast growth of bamboo shoots mainly focused on the entire culm. No work about the fast elongation of a single internode, which is the basic unit for the fast growth of bamboo shoots, has been reported so far according to our knowledge. In this study, we have systematically investigated the regulating mechanisms underlying the fast growth of a single bamboo internode of Bambusa multiplex (Lour.) Raeusch. ex Schult. We discovered that the growth of the internode displays a logistic pattern, and the two sections located in the bottom of the internode, one for cell division and, another for cell elongation, each with an ~1-cm length, comprise the effective zones for the internode growth. RNA-Seq analysis identified a number of genes potentially involved in regulating the fast growth of bamboo internode such as those that have positive roles in promoting cell growth or division, which were dramatically down-regulated in the internode at fast growth decreasing stage. Further analysis revealed that sugar plays an important role in promoting the fast growth of bamboo internodes through inhibition of BmSnf1. Mechanical stress is found to be involved in the triggering of the internode growth decrease through activation of the generation of reactive oxygen species by upregulating Calmodulins. These results provide systematic insight into the biological mechanisms underlying the fast growth of bamboo shoots based on the behavior of a single internode.

Funder

National Key point Research and Invention Program

Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3