Respiratory costs of producing and maintaining stem biomass in eight co-occurring tree species

Author:

Rodríguez-Calcerrada Jesús1ORCID,Salomón Roberto L12ORCID,Gordaliza Guillermo G1,Miranda José C1ORCID,Miranda Eva1,de la Riva Enrique G3,Gil Luis1

Affiliation:

1. Forest Genetics and Ecophysiology Research Group, School of Forestry Engineering, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain

2. Laboratory of Plant Ecology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium

3. Department of Ecology, Brandenburg University of Technology, 03046 Cottbus, Germany

Abstract

AbstractGiven the importance of carbon allocation for plant performance and fitness, it is expected that competition and abiotic stress influence respiratory costs associated with stem wood biomass production and maintenance. In this study, stem respiration (R) was measured together with stem diameter increment in adult trees of eight co-occurring species in a sub-Mediterranean forest stand for 2 years. We estimated growth R (Rg), maintenance R (Rm) and the growth respiration coefficient (GRC) using two gas exchange methods: (i) estimating Rg as the product of growth and GRC (then Rm as R minus Rg) and (ii) estimating Rm from temperature-dependent kinetics of basal Rm at the dormant season (then Rg as R minus Rm). In both cases, stem basal-area growth rates governed intra-annual variation in R, Rg and Rm. Maximum annual Rm occurred slightly before or after maximum Rg. The mean contribution of Rm to R during the growing season ranged from 56% to 88% across species using method 1 and from 23% to 66% using method 2. An analysis accounting for the phylogenetic distance among species indicated that more shade-tolerant, faster growing species exhibited higher Rm and Rg than less shade-tolerant, slower growing ones, suggesting a balance between carbon supply and demand mediated by growth. However, GRC was not related to species growth rate, wood density, or drought and shade tolerance across the surveyed species nor across 27 tree species for which GRC was compiled. The GRC estimates based on wood chemical analysis were lower (0.19) than those based on gas exchange methods (0.35). These results give partial support to the hypothesis that wood production and maintenance costs are related to species ecology and highlight the divergence of respiratory parameters widely used in plant models according to the methodological approach applied to derive them.

Funder

Regional Government of Madrid

European Union’s Horizon 2020 research and innovation programme

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3