Gall- and erineum-forming Eriophyes mites alter photosynthesis and volatile emissions in an infection severity-dependent manner in broad-leaved trees Alnus glutinosa and Tilia cordata

Author:

Jiang Yifan12ORCID,Ye Jiayan1,Veromann-Jürgenson Linda-Liisa1,Niinemets Ülo13ORCID

Affiliation:

1. Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia

2. College of Horticulture, Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, China

3. Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia

Abstract

Abstract Highly host-specific eriophyoid gall- and erineum-forming mites infest a limited range of broadleaf species, with the mites from the genus Eriophyes particularly widespread on Alnus spp. and Tilia spp. Once infected, the infections can be massive, covering a large part of leaf area and spreading through the plant canopy, but the effects of Eriophyes mite gall formation on the performance of host leaves are poorly understood. We studied the influence of three frequent Eriophyes infections, E. inangulis gall-forming mites on Alnus glutinosa, and E. tiliae gall-forming and E. exilis erineum-forming mites on Tilia cordata, on foliage morphology, chemistry, photosynthetic characteristics, and constitutive and induced volatile emissions. For all types of infections, leaf dry mass per unit area, net assimilation rate per area and stomatal conductance strongly decreased with increasing severity of infection. Mite infections resulted in enhancement or elicitation of emissions of fatty acid-derived volatiles, isoprene, benzenoids and carotenoid breakdown products in an infection severity-dependent manner for all different infections. Monoterpene emissions were strongly elicited in T. cordata mite infections, but these emissions were suppressed in E. inangulis-infected A. glutinosa. Although the overall level of mite-induced emissions was surprisingly low, these results highlight the uniqueness of the volatile profiles and offer opportunities for using volatile fingerprints and overall emission rates to diagnose infections by Eriophyes gall- and erineum-forming mites on temperate trees and assess their impact on the physiology of the affected trees.

Funder

European Commission through the European Research Council

European Regional Development Fund

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3