Specific leaf metabolic changes that underlie adjustment of osmotic potential in response to drought by four Quercus species

Author:

Aranda Ismael12ORCID,Cadahía Estrella1,Fernández de Simón Brígida1

Affiliation:

1. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Centro de Investigación Forestal, Carretera Coruña Km 7.5, E-28040 Madrid, Spain

2. INAGEA, Instituto de Investigaciones Agroambientales y de Economía del Agua, 07122 Palma de Mallorca, Spain

Abstract

Abstract Osmotic adjustment is almost ubiquitous as a mechanism of response to drought in many forest species. Recognized as an important mechanism of increasing turgor under water stress, the metabolic basis for osmotic adjustment has been described in only a few species. We set an experiment with four species of the genus Quercus ranked according to drought tolerance and leaf habit from evergreen to broad-leaved deciduous. A cycle of watering deprivation was imposed on seedlings, resulting in well-watered (WW) and water-stressed (WS) treatments, and their water relations were assessed from pressure–volume curves. Leaf predawn water potential (Ψpd) significantly decreased in WS seedlings, which was followed by a drop in leaf osmotic potential at full turgor (Ψπ100). The lowest values of Ψπ100 followed the ranking of decreasing drought tolerance: Quercus ilex L. < Quercus faginea Lam. < Quercus pyrenaica Willd. < Quercus petraea Matt. Liebl. The leaf osmotic potential at the turgor loss point (ΨTLP) followed the same pattern as Ψπ100 across species and treatments. The pool of carbohydrates, some organic acids and cyclitols were the main osmolytes explaining osmotic potential across species, likewise to the osmotic adjustment assessed from the decrease in leaf Ψπ100 between WW and WS seedlings. Amino acids were very responsive to WS, particularly γ-aminobutyric acid in Q. pyrenaica, but made a relatively minor contribution to osmotic potential compared with other groups of compounds. In contrast, the cyclitol proto-quercitol made a prominent contribution to the changes in osmotic potential regardless of watering treatment or species. However, different metabolites, such as quinic acid, played a more important role in osmotic adjustment in Q. ilex, distinguishing it from the other species studied. In conclusion, while osmotic adjustment was present in all four Quercus species, the molecular processes underpinning this response differed according to their phylogenetic history and specific ecology.

Funder

Ministry of Economy and Competitiveness

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Reference110 articles.

1. Source of variation in osmotic potentials with special reference to North American tree species;Abrams;For Sci,1988

2. Adaptations and responses to drought in Quercus species of North America;Abrams;Tree Physiol,1990

3. Photosynthesis and water relations during drought in Acer rubrum L. genotypes from contrasting sites in Central Pennsylvania;Abrams;Funct Ecol,1990

4. Ecophysiological responses in mesic versus xeric hardwood species to an early season drought in Central Pennsylvania;Abrams;For Sci,1990

5. Differentiation in the water-use strategies among oak species from Central Mexico;Aguilar-Romero;Tree Physiol,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3