UV-B and UV-C radiation trigger both common and distinctive signal perceptions and transmissions in Pinus tabuliformis Carr.

Author:

Xu Jie1,Luo Hang1,Zhou Shan-Shan1,Jiao Si-Qian1,Jia Kai-Hua1,Nie Shuai1,Liu Hui1,Zhao Wei12,Wang Xiao-Ru12,El-Kassaby Yousry A3,Porth Ilga4,Mao Jian-Feng1ORCID

Affiliation:

1. Beijing Advanced Innovation Center for Tree Breeding by Molecular Design , National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Qinghua East Road No35, Beijing 100083 , China

2. Department of Ecology and Environmental Science , Umeå Plant Science Centre, Umeå University, Linnaeus väg 6, Umeå SE-901 87 , Sweden

3. Department of Forest and Conservation Sciences , The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4 , Canada

4. Départment des Sciences du Bois et de la Forêt , Faculté de Foresterie, de Géographie et Géomatique, Université Laval Québec, 1030 Avenue de la Médecine, Québec, Québec City G1V 0A6 , Canada

Abstract

Abstract In plants, ultraviolet (UV)-light is an important driver for growth and natural distribution, and is also a valuable tool for manipulating productivity as well as biotic interactions. Understanding of plant responses to different UV radiation is sparse, especially from a systems biology perspective and particularly for conifers. Here, we evaluated the physiological and transcriptomic responses to the short-term application of high-irradiance UV-B and UV-C waves on Pinus tabuliformis Carr., a major conifer in Northern China. By undertaking time-ordered gene coexpression network analyses and network comparisons incorporating physiological traits and gene expression variation, we uncovered communalities but also differences in P. tabuliformis responses to UV-B and UV-C. Both types of spectral bands caused a significant inhibition of photosynthesis, and conversely, the improvement of antioxidant capacity, flavonoid production and signaling pathways related to stress resistance, indicating a clear switch from predominantly primary metabolism to enhanced defensive metabolism in pine. We isolated distinct subnetworks for photoreceptor-mediated signal transduction, maximum quantum efficiency of photosystem II (Fv/Fm) regulation and flavonoid biosynthesis in response to UV-B and UV-C radiation. From these subnetworks, we further identified phototropins as potentially important elements in both UV-B and UV-C signaling and, for the first time, suggesting peptide hormones to be involved in promoting flavonoid biosynthesis against UV-B, while these hormones seem not to be implicated in the defense against UV-C exposure. The present study employed an effective strategy for disentangling the complex physiological and genetic regulatory mechanisms in a nonmodel plant species, and thus, provides a suitable reference for future functional evaluations and artificial UV-light mediated growing strategies in plant production.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3