Transcriptomic analysis reveals differentially expressed genes associated with pine wood nematode resistance in resistant Pinus thunbergii

Author:

Wang Xin-Yu12ORCID,Wu Xiao-Qin12,Wen Tong-Yue12,Feng Ya-Qi12,Zhang Yan12

Affiliation:

1. Nanjing Forestry University , No. 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu 210037 , China

2. Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University , No. 159 Longpan Road, Xuanwu District, Nanjing, Jiangsu 210037 , China

Abstract

Abstract Pine wilt disease (caused by the nematode Bursaphelenchus xylophilus) is extremely harmful to pine forests in East Asia. As a low-resistance pine species, Pinus thunbergii is more vulnerable to pine wood nematode (PWN) than Pinus densiflora and Pinus massoniana. Field inoculation experiments were conducted on PWN-resistant and -susceptible P. thunbergii, and the difference in transcription profiles 24 h after inoculation was analyzed. We identified 2603 differentially expressed genes (DEGs) in PWN-susceptible P. thunbergii, while 2559 DEGs were identified in PWN-resistant P. thunbergii. Before inoculation, DEGs between PWN-resistant and PWN-susceptible P. thunbergii were enriched in the REDOX (Oxidation-Reduction) activity pathway (152 DEGs), followed by the oxidoreductase activity pathway (106 DEGs). After inoculation with PWN, however, the opposite was observed; DEGs were enriched in the oxidoreductase activity pathway (119 DEGs), followed by the REDOX activity pathway (84 DEGs). Before inoculation, according to the metabolic pathway analysis results, we found more genes upregulated in phenylpropanoid metabolic pathways and enriched in lignin synthesis pathways; cinnamoyl-CoA reductase-coding genes related to lignin synthesis were upregulated in PWN-resistant P. thunbergii and downregulated in PWN-susceptible P. thunbergii, and the lignin content was always higher in resistant than in susceptible P. thunbergii. These results reveal distinctive strategies of resistant and susceptible P. thunbergii in dealing with PWN infections.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

National Forestry and Grassland Administration

the National Key R& D Program of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3