Anatomical observation and transcriptome analysis of buds reveal the association between the AP2 gene family and reproductive induction in hybrid larch (Larix kaempferi × Larix olgensis)

Author:

Hao Jun-Fei1,Wang Chen1,Gu Chen-Rui1,Xu Dai-Xi1,Zhang Lei1,Zhang Han-Guo1ORCID

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University , No. 51 Hexing Road, Xiangfang District, Harbin 150040, China

Abstract

Abstract Hybrid larch is an excellent afforestation species in northern China. The instability of seed yield is an urgent problem to be solved. The biological characteristics related to seed setting in larch are different from those in angiosperms and other gymnosperms. Studying the developmental mechanism of the larch sporophyll can deepen our understanding of conifer reproductive development and help to ensure an adequate supply of seeds in the seed orchard. The results showed that the formation of microstrobilus primordia in hybrid larch could be observed in anatomical sections collected in the middle of July. The contents of endogenous gibberellin 3 (GA3) and abscisic acid (ABA) were higher and the contents of GA4, GA7, jasmonic acid and salicylic acid were lower in multiseeded larch. Transcriptome analysis showed that transcription factors were significantly enriched in the AP2 family. There were 23 differentially expressed genes in the buds of the multiseeded and less-seeded types, and the expression of most of these genes was higher in the buds than in the needles. We conclude that mid-July is the early stage of reproductive organ development in hybrid larch and is suitable for the study of reproductive development. GA3 and ABA may be helpful for improving seed setting in larch, and 23 AP2/EREBP family genes are involved in the regulation of reproductive development in larch.

Funder

National Science and Technology Major Project

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3