Elevated CO2 causes different growth stimulation, water- and nitrogen-use efficiencies, and leaf ultrastructure responses in two conifer species under intra- and interspecific competition

Author:

Yu Lei1,Dong Haojie1,Huang Zongdi1,Korpelainen Helena2,Li Chunyang1

Affiliation:

1. Department of Ecology, College of Life and Environmental Sciences, Hangzhou Normal University, Yuhangtang Road 2318, Hangzhou 311121, China

2. Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Latokartanonkaari 5 FI-00014, Helsinki, Finland

Abstract

Abstract The continuously increasing atmospheric carbon dioxide concentration ([CO2]) has substantial effects on plant growth, and on the composition and structure of forests. However, how plants respond to elevated [CO2] (e[CO2]) under intra- and interspecific competition has been largely overlooked. In this study, we employed Abies faxoniana Rehder & Wilson and Picea purpurea Mast. seedlings to explore the effects of e[CO2] (700 p.p.m.) and plant–plant competition on plant growth, physiological and morphological traits, and leaf ultrastructure. We found that e[CO2] stimulated plant growth, photosynthesis and nonstructural carbohydrates (NSC), affected morphological traits and leaf ultrastructure, and enhanced water- and nitrogen (N)- use efficiencies in A. faxoniana and P. purpurea. Under interspecific competition and e[CO2], P. purpurea showed a higher biomass accumulation, photosynthetic capacity and rate of ectomycorrhizal infection, and higher water- and N-use efficiencies compared with A. faxoniana. However, under intraspecific competition and e[CO2], the two conifers showed no differences in biomass accumulation, photosynthetic capacity, and water- and N-use efficiencies. In addition, under interspecific competition and e[CO2], A. faxoniana exhibited higher NSC levels in leaves as well as more frequent and greater starch granules, which may indicate carbohydrate limitation. Consequently, we concluded that under interspecific competition, P. purpurea possesses a positive growth and adjustment strategy (e.g. a higher photosynthetic capacity and rate of ectomycorrhizal infection, and higher water- and N-use efficiencies), while A. faxoniana likely suffers from carbohydrate limitation to cope with rising [CO2]. Our study highlights that plant–plant competition should be taken into consideration when assessing the impact of rising [CO2] on the plant growth and physiological performance.

Funder

Talent Program of the Hangzhou Normal University

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3