Normalization criteria determine the interpretation of nitrogen effects on the root hydraulics of pine seedlings

Author:

Toca Andrei12ORCID,Villar-Salvador Pedro1,Oliet Juan A3,Jacobs Douglass F2

Affiliation:

1. Forest Ecology and Restoration Group, Departamento de Ciencias de la Vida, Universidad de Alcalá, Apdo 20, Alcalá de Henares, Madrid 28805, Spain

2. Department of Forestry and Natural Resources, Hardwood Tree Improvement and Regeneration Center, Purdue University, 715 West State Street, West Lafayette, IN 47907, USA

3. Departamento de Sistemas y Recursos Naturales, E.T.S. Ingenieros de Montes, Forestal y del Medio Natural, Universidad Politécnica de Ciudad Universitaria s/n, Madrid, 28040 Madrid, Spain

Abstract

Abstract Plant hydraulics is key for plant survival and growth because it is linked to gas exchange and drought resistance. Although the environment influences plant hydraulics, there is no clear consensus on the effect of nitrogen (N) supply, which may be, in part, due to different hydraulic conductance normalization criteria and studied species. The objective of this study was to compare the variation of root hydraulic properties using several normalization criteria in four pine species in response to three contrasting N fertilization regimes. We studied four closely related, yet ecologically distinct species: Pinus nigra J.F. Arnold, Pinus pinaster Ait., Pinus pinea L. and Pinus halepensis Mill. Root hydraulic conductance (Kh) was measured with a high-pressure flow meter, and values were normalized by total leaf area (leaf specific conductance, Kl), xylem cross-section area (xylem specific conductance, Ks), total root area (root specific conductance, Kr) and the area of fine roots (fine root specific conductance, Kfr). Controlling for organ size differences allowed comparison of the hydraulic efficiency of roots to supply or absorb water among fertilization treatments and species. The effect of N on the root hydraulic efficiency depended on the normalization criteria. Increasing N availability reduced Kl and Ks, but increased Kh, Kr and especially Kfr. The positive effect of N on Kr and Kfr was positively related to seedling relative growth rate and was also consistent with published results at the interspecific level, whereby plant hydraulics is positively linked to photosynthesis and transpiration rate and fast growth. In contrast, normalization by leaf area and xylem cross-sectional area (Kl and Ks) reflected opposite responses to Kr and Kfr. This indicates that the normalization criteria determine the interpretation of the effect of N on plant hydraulics, which can limit species and treatment comparisons.

Funder

ECOLPIN

SERAVI

REMEDINAL

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

Reference73 articles.

1. Nitrogen availability and nitrogen use efficiency in loblolly pine stands;Birk;Ecology,1986

2. Long-term temporal relationships between environmental conditions and xylem functional traits: a meta-analysis across a range of woody species along climatic and nitrogen deposition gradients;Borghetti;Tree Physiol,2016

3. Leaf water status and root system water flux of shortleaf pine (Pinus echinata Mill.) seedlings in relation to new root growth after transplanting;Brissette;Tree Physiol,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3