A survey of extant organizational and computational setups for deploying predictive models in health systems

Author:

Kashyap Sehj1ORCID,Morse Keith E2ORCID,Patel Birju1ORCID,Shah Nigam H1ORCID

Affiliation:

1. Stanford Center for Biomedical Informatics Research, Stanford University, Stanford, California, USA

2. Division of Pediatric Hospital Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA

Abstract

Abstract Objective Artificial intelligence (AI) and machine learning (ML) enabled healthcare is now feasible for many health systems, yet little is known about effective strategies of system architecture and governance mechanisms for implementation. Our objective was to identify the different computational and organizational setups that early-adopter health systems have utilized to integrate AI/ML clinical decision support (AI-CDS) and scrutinize their trade-offs. Materials and Methods We conducted structured interviews with health systems with AI deployment experience about their organizational and computational setups for deploying AI-CDS at point of care. Results We contacted 34 health systems and interviewed 20 healthcare sites (58% response rate). Twelve (60%) sites used the native electronic health record vendor configuration for model development and deployment, making it the most common shared infrastructure. Nine (45%) sites used alternative computational configurations which varied significantly. Organizational configurations for managing AI-CDS were distinguished by how they identified model needs, built and implemented models, and were separable into 3 major types: Decentralized translation (n = 10, 50%), IT Department led (n = 2, 10%), and AI in Healthcare (AIHC) Team (n = 8, 40%). Discussion No singular computational configuration enables all current use cases for AI-CDS. Health systems need to consider their desired applications for AI-CDS and whether investment in extending the off-the-shelf infrastructure is needed. Each organizational setup confers trade-offs for health systems planning strategies to implement AI-CDS. Conclusion Health systems will be able to use this framework to understand strengths and weaknesses of alternative organizational and computational setups when designing their strategy for artificial intelligence.

Funder

Stanford Health Care

The Department of Medicine

Stanford School of Medicine

Debra and Mark Leslie

AI in Healthcare

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3