ML-Net: multi-label classification of biomedical texts with deep neural networks

Author:

Du Jingcheng12,Chen Qingyu1,Peng Yifan1ORCID,Xiang Yang2,Tao Cui2,Lu Zhiyong1

Affiliation:

1. National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, USA

2. The University of Texas School of Biomedical Informatics, Houston, Texas, USA

Abstract

Abstract Objective In multi-label text classification, each textual document is assigned 1 or more labels. As an important task that has broad applications in biomedicine, a number of different computational methods have been proposed. Many of these methods, however, have only modest accuracy or efficiency and limited success in practical use. We propose ML-Net, a novel end-to-end deep learning framework, for multi-label classification of biomedical texts. Materials and Methods ML-Net combines a label prediction network with an automated label count prediction mechanism to provide an optimal set of labels. This is accomplished by leveraging both the predicted confidence score of each label and the deep contextual information (modeled by ELMo) in the target document. We evaluate ML-Net on 3 independent corpora in 2 text genres: biomedical literature and clinical notes. For evaluation, we use example-based measures, such as precision, recall, and the F measure. We also compare ML-Net with several competitive machine learning and deep learning baseline models. Results Our benchmarking results show that ML-Net compares favorably to state-of-the-art methods in multi-label classification of biomedical text. ML-Net is also shown to be robust when evaluated on different text genres in biomedicine. Conclusion ML-Net is able to accuractely represent biomedical document context and dynamically estimate the label count in a more systematic and accurate manner. Unlike traditional machine learning methods, ML-Net does not require human effort for feature engineering and is a highly efficient and scalable approach to tasks with a large set of labels, so there is no need to build individual classifiers for each separate label.

Funder

NIH

Publisher

Oxford University Press (OUP)

Subject

Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3