Affiliation:
1. National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, Maryland, USA
2. The University of Texas School of Biomedical Informatics, Houston, Texas, USA
Abstract
Abstract
Objective
In multi-label text classification, each textual document is assigned 1 or more labels. As an important task that has broad applications in biomedicine, a number of different computational methods have been proposed. Many of these methods, however, have only modest accuracy or efficiency and limited success in practical use. We propose ML-Net, a novel end-to-end deep learning framework, for multi-label classification of biomedical texts.
Materials and Methods
ML-Net combines a label prediction network with an automated label count prediction mechanism to provide an optimal set of labels. This is accomplished by leveraging both the predicted confidence score of each label and the deep contextual information (modeled by ELMo) in the target document. We evaluate ML-Net on 3 independent corpora in 2 text genres: biomedical literature and clinical notes. For evaluation, we use example-based measures, such as precision, recall, and the F measure. We also compare ML-Net with several competitive machine learning and deep learning baseline models.
Results
Our benchmarking results show that ML-Net compares favorably to state-of-the-art methods in multi-label classification of biomedical text. ML-Net is also shown to be robust when evaluated on different text genres in biomedicine.
Conclusion
ML-Net is able to accuractely represent biomedical document context and dynamically estimate the label count in a more systematic and accurate manner. Unlike traditional machine learning methods, ML-Net does not require human effort for feature engineering and is a highly efficient and scalable approach to tasks with a large set of labels, so there is no need to build individual classifiers for each separate label.
Publisher
Oxford University Press (OUP)
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献